
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Consistency --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap: Linearizability
•  Linearizability

–  Should provide the behavior of a single copy
–  A read operation returns the most recent write, regardless of

the clients.
–  “The most recent”: determined by time.

•  Complication
–  In the presence of concurrency, read/write operations

overlap.

2

CSE 486/586, Spring 2014

Recap: Linearizability Complications
•  Non-overlapping ops: time-based clear-cut ordering

•  Overlapping ops: not clear-cut with time

3

a.write(x)
a.read()

a.read()

a.write(x)

a.read()

a.read()

a.read()

a.write(y)

CSE 486/586, Spring 2014

Linearizability Examples
•  Example 1

•  Example 2

4

a.write(x)
a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x
If this were
a.read() -> 0, it
wouldn’t support
linearizability.

CSE 486/586, Spring 2014

Linearizability Examples
•  Example 3

5

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)

CSE 486/586, Spring 2014

Chain Replication
•  One technique to provide linearizability

6

N0 N1 N2

Reads Replies Writes

Head Tail

C 2

CSE 486/586, Spring 2014

Passive (Primary-Backup)
Replication

•  Request Communication: the request is issued to the
primary RM and carries a unique request id.

•  Coordination: Primary takes requests atomically, in
order, checks id (resends response if not new id.)

•  Execution: Primary executes & stores the response
•  Agreement: If update, primary sends updated state/

result, req-id and response to all backup RMs (1-
phase commit enough).

•  Response: primary sends result to the front end

7

Client! Front End!
RM"

RM"

RM"
Client! Front End! RM"

primary!

Backup!

Backup!
Backup!

….!

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA3 deadline: 4/11 (Friday)

8

CSE 486/586, Spring 2014

Linearizability vs. Sequential
Consistency
•  Both care about giving an illusion of a single copy.

–  From the outside observer, the system should (almost)
behave as if there’s only a single copy.

•  Linearizability cares about time.
–  Steve writes on his facebook wall at 11am.
–  Atri writes on his facebook wall at 11:05am.
–  Everyone will see the posts in that order.

•  Sequential consistency cares about program order.
–  Steve writes on his facebook wall at 11am.
–  Atri writes on his facebook wall at 11:05am.
–  It’s not necessarily that the posts will be ordered that way

(though everyone will see the same order).

9 CSE 486/586, Spring 2014

Sequential Consistency
•  Sequential consistency

–  Should provide the behavior of a single copy
–  A read operation returns the most recent write, regardless of

the clients.

•  “most recent”
–  Ops within the same client: determined by time (program

order)
– Ops across clients: Not determined by time, i.e., we can re-

order them.
–  I.e., we just need to preserve the program order

10

CSE 486/586, Spring 2014

Sequential Consistency
•  To the outside observer, the system needs to provide

a global ordering of operations where:
–  It works like a single copy.
–  The ordering of ops coming from the same client is

preserved.

•  Linearizability vs. sequential consistency
– With sequential consistency, the system has freedom as to

how to interleave operations coming from different clients,
as long as the ordering from each client is preserved.

– With linearizability, the interleaving across all clients is pretty
much determined already based on time.

11 CSE 486/586, Spring 2014

Sequential Consistency Examples
•  Example 1

–  P1: a.write(A)
–  P2: a.write(B)
–  P3: a.read()->B a.read()->A
–  P4: a.read()->B a.read()->A

•  Example 2
–  P1: a.write(A)
–  P2: a.write(B)
–  P3: a.read()->B a.read()->A
–  P4: a.read()->A a.read()->B

12

C 3

CSE 486/586, Spring 2014

Active Replication

13

•  Request Communication: The request contains a unique identifier
and is multicast to all by a reliable totally-ordered multicast.

•  Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different
physical times!).

•  Execution: Each replica executes the request. (Correct replicas
return same result since they are running the same program, i.e.,
they are replicated protocols or replicated state machines)

•  Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

•  Response: Each replica sends response directly to FE

Client! Front End! RM"

RM"

Client! Front End! RM"

….!

CSE 486/586, Spring 2014

Two More Consistency Models
•  Even more relaxed

– We don’t even care about providing an illusion of a single
copy.

•  Causal consistency
– We care about ordering causally related write operations

correctly.

•  Eventual consistency (next lecture)
–  As long as we can say all replicas converge to the same

copy eventually, we’re fine.

14

CSE 486/586, Spring 2014

Summary
•  Linearizability

–  The ordering of operations is determined by time.
–  Primary-backup can provide linearizability.
– Chain replication can also provide linearizability.

•  Sequential consistency
–  The ordering of operations preserves the program order of

each client.
–  Active replication can provide sequential consistency.

15 CSE 486/586, Spring 2014 16

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

