
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Consistency --- 3

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap
•  Consistency

–  Linearizability?
–  Sequential consistency?

•  Chain replication
•  Primary-backup (passive) replication
•  Active replication

2

CSE 486/586, Spring 2014

Linearizability vs. Sequential
Consistency
•  Both care about giving an illusion of a single copy.

–  From the outside observer, the system should (almost)
behave as if there’s only a single copy.

•  Linearizability cares about time.
–  Steve writes on his facebook wall at 11am.
–  Atri writes on his facebook wall at 11:05am.
–  Everyone will see the posts in that order.

•  Sequential consistency cares about program order.
–  Steve writes on his facebook wall at 11am.
–  Atri writes on his facebook wall at 11:05am.
–  It’s not necessarily that the posts will be ordered that way

(though everyone will see the same order).

3 CSE 486/586, Spring 2014

Two More Consistency Models
•  Even more relaxed

– We don’t even care about providing an illusion of a single
copy.

•  Causal consistency
– We care about ordering causally related write operations

correctly.

•  Eventual consistency
–  As long as we can say all replicas converge to the same

copy eventually, we’re fine.

4

CSE 486/586, Spring 2014

Causal Consistency
•  Writes that are potentially causally related must be

seen by all processes in the same order. Concurrent
writes may be seen in a different order on different
machines.

– Weaker than sequential consistency

•  How do we define “causal relations” between two
writes?

–  (Roughly) One client reads something that another client
has written; then the client writes something.

5 CSE 486/586, Spring 2014

Causal Consistency
•  Example 1:

6

P1:"
P2:"
P3:"
P4:"

W(x)1" W(x) 3"
R(x)1 W(x)2"
R(x)1"
R(x)1"

R(x)3 R(x)2"
R(x)2 R(x) 3"

This sequence obeys causal consistency"

Concurrent writes"Causally related"

C 2

CSE 486/586, Spring 2014

Causal Consistency Example 2
•  Causally consistent?

•  No!

7

P1:"
P2:"
P3:"
P4:"

W(x)1"
R(x)1 W(x)2"

R(x)2 R(x)1"
R(x)1 R(x) 2"

Causally related"

CSE 486/586, Spring 2014

Causal Consistency Example 3
•  Causally consistent?

•  Yes!

8

P1:"
P2:"
P3:"
P4:"

W(x)1"
W(x)2"

R(x)2 R(x)1"
R(x)1 R(x) 2"

CSE 486/586, Spring 2014

Eventual Consistency
•  Popularized by the CAP theorem.
•  The main problem is network partitions.

9

Client + front end	

B	

withdraw(B, 4)	

Client + front end	

Replica managers	

deposit(B,3);	

U	
T	
 Network	

partition	

B	

B	
 B	

CSE 486/586, Spring 2014

Dilemma
•  In the presence of a network partition:
•  In order to keep the replicas consistent, you need to

block.
–  From the outside observer, the system appears to be

unavailable.
•  If we still serve the requests from two partitions, then

the replicas will diverge.
–  The system is available, but no consistency.

•  The CAP theorem explains this dilemma.

10

CSE 486/586, Spring 2014

CAP Theorem
•  Consistency
•  Availability

– Respond with a reasonable delay

•  Partition tolerance
–  Even if the network gets partitioned

•  In the presence of a partition, which one to choose?
Consistency or availability?

•  Brewer conjectured in 2000, then proven by Gilbert
and Lynch in 2002.

11 CSE 486/586, Spring 2014

Coping with CAP
•  The main issue is the Internet.

–  As the system grows to span geographically distributed
areas, network partitioning becomes inevitable.

•  Then the choice is either giving up availability or
consistency

•  A design choice: What makes more sense to your
scenario?

•  Giving up availability and retaining consistency
–  E.g., use 2PC
–  Your system blocks until everything becomes consistent.

•  Giving up consistency and retaining availability
–  Eventual consistency

12

C 3

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA3 due on 4/11 (Friday)!

13 CSE 486/586, Spring 2014

Dealing with Network Partitions
•  During a partition, pairs of conflicting transactions

may have been allowed to execute in different
partitions. The only choice is to take corrective action
after the network has recovered

–  Assumption: Partitions heal eventually

•  Abort one of the transactions after the partition has
healed

•  Basic idea: allow operations to continue in one or
some of the partitions, but reconcile the differences
later after partitions have healed

14

CSE 486/586, Spring 2014

Quorum Approaches
•  Quorum approaches used to decide whether reads

and writes are allowed
•  There are two types: pessimistic quorums and

optimistic quorums
•  In the pessimistic quorum philosophy, updates are

allowed only in a partition that has the majority of
RMs

– Updates are then propagated to the other RMs when the
partition is repaired.

15 CSE 486/586, Spring 2014

Static Quorums
•  The decision about how many RMs should be

involved in an operation on replicated data is called
Quorum selection

•  Quorum rules state that:
–  At least r replicas must be accessed for read
–  At least w replicas must be accessed for write
–  r + w > N, where N is the number of replicas
–  w > N/2
–  Each object has a version number or a consistent

timestamp

16

CSE 486/586, Spring 2014

Static Quorums
•  What does r + w > N mean?

–  The only way to satisfy this condition is that there’s always
an overlap between the reader set and the write set.

–  There’s always some replica that has the most recent write.

•  What does w > N/2 mean?
– When there’s a network partition, only the partition with more

than half of the RMs can perform write operations.
–  The rest will just serve reads with stale data.

•  R and W are tunable:
–  E.g., N=3, r=1, w=3: High read throughput, perhaps at the

cost of write throughput.

17 CSE 486/586, Spring 2014

Optimistic Quorum Approaches
•  An Optimistic Quorum selection allows writes to

proceed in any partition.
•  “Write, but don’t commit”

– Unless the partition gets healed in time.

•  Resolve write-write conflicts after the partition heals.
•  Optimistic Quorum is practical when:

– Conflicting updates are rare
– Conflicts are always detectable
– Damage from conflicts can be easily confined
– Repair of damaged data is possible or an update can be

discarded without consequences
–  Partitions are relatively short-lived

18

C 4

CSE 486/586, Spring 2014

View-based Quorum
•  An optimistic approach
•  Quorum is based on views at any time

– Uses group communication as a building block

•  We define thresholds for each of read and write :
– W: regular writer quorum
– R: regular reader quorum
–  Aw: minimum nodes in a view for write, e.g., Aw > N/4
–  Ar: minimum nodes in a view for read
–  E.g., Aw + Ar > N/2

•  Protocol
–  Try regular quorum first; if it doesn’t work, change the view.

If the minimum is satisfied, then proceed.
–  Aw & Ar effectively determine which partition can proceed.

19 CSE 486/586, Spring 2014

Example: View-based Quorum
•  Consider: N = 5, w = 5, r = 1, Aw = 3, Ar = 1

20

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

Initially all nodes
are in!

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

Network is
partitioned!

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

Read is initiated,
quorum is reached!

read!

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

write is initiated,
quorum not reached!

w! X!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P1 changes view,
writes & updates
views!

w!

CSE 486/586, Spring 2014

Example: View-based Quorum
(cont'd)

21

• 

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

Partition is repaired!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P5 initiates read,
has quorum, reads
stale data!

r!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P3 initiates write,
notices repair!

w!

1!
V1.2!

2!
V2.2!

3!
V3.2!

4!
V4.2!

5!
V5.2!

Views are updated
to include P5; P5 is
informed of updates!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P5 initiates write,
no quorum, Aw not
met, aborts.!

w
X
X
X
X

CSE 486/586, Spring 2014

Summary
•  Causal consistency & eventual consistency
•  Quorums

–  Static
– Optimistic
–  View-based

22

CSE 486/586, Spring 2014 23

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

