
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Distributed File Systems

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap
•  Optimistic quorum
•  Distributed transactions with replication

– One copy serializability
–  Primary copy replication
– Read-one/write-all replication
–  Active copies replication

2

CSE 486/586, Spring 2014

Local File Systems
•  File systems provides file management.

– Name space
–  API for file operations (create, delete, open, close, read,

write, append, truncate, etc.)
–  Physical storage management & allocation (e.g., block

storage)
–  Security and protection (access control)

•  Name space is usually hierarchical.
–  Files and directories

•  File systems are mounted.
– Different file systems can be in the same name space.

3 CSE 486/586, Spring 2014

Traditional Distributed File Systems
•  Goal: emulate local file system behaviors

–  Files not replicated
– No hard performance guarantee

•  But,
–  Files located remotely on servers
– Multiple clients access the servers

•  Why?
– Users with multiple machines
– Data sharing for multiple users
– Consolidated data management (e.g., in an enterprise)

4

CSE 486/586, Spring 2014

Requirements
•  Transparency: a distributed file system should

appear as if it’s a local file system
–  Access transparency: it should support the same set of

operations, i.e., a program that works for a local file system
should work for a DFS.

–  (File) Location transparency: all clients should see the same
name space.

– Migration transparency: if files move to another server, it
shouldn’t be visible to users.

–  Performance transparency: it should provide reasonably
consistent performance.

–  Scaling transparency: it should be able to scale
incrementally by adding more servers.

5 CSE 486/586, Spring 2014

Requirements
•  Concurrent updates should be supported.
•  Fault tolerance: servers may crash, msgs can be lost,

etc.
•  Consistency needs to be maintained.
•  Security: access-control for files & authentication of

users

6

C 2

CSE 486/586, Spring 2014

File Server Architecture

7

Client computer	

 Server computer	

Application	

program	

Application	

program	

Client module	

Flat file service	

Directory service	

CSE 486/586, Spring 2014

Components
•  Directory service

– Meta data management
– Creates and updates directories (hierarchical file structures)
–  Provides mappings between user names of files and the

unique file ids in the flat file structure.
•  Flat file service

–  Actual data management
–  File operations (create, delete, read, write, access control,

etc.)
•  These can be independently distributed.

–  E.g., centralized directory service & distributed flat file
service

8

CSE 486/586, Spring 2014

Sun NFS

9

 Application
Program"

 Application
Program"

Virtual File System"

UNIX
File
System"

Other
File
System"

NFS
Client
System"

Client Computer"

Virtual File System"

NFS
Server
System"

UNIX
File
System"

Server Computer"

NFS
Protocol!

UNIX
Kernel"

CSE 486/586, Spring 2014

VFS
•  A translation layer that makes file systems pluggable

& co-exist
–  E.g., NFS, EXT2, EXT3, ZFS, etc.

•  Keeps track of file systems that are available locally
and remotely.

•  Passes requests to appropriate local or remote file
systems

•  Distinguishes between local and remote files.

10

CSE 486/586, Spring 2014

NFS Mount Service

11

..."

/"

student"

usr"

…"

/"

users"

nfs"

pet" jim" bob"

staff"

/"

people"

org"

mth" john" bob"

Each server keeps a record of local files available for
remote mounting. Clients use a mount command for
remote mounting, providing name mappings"

Remote
Mount"

Server 1! Client! Server 2!

CSE 486/586, Spring 2014

NFS Basic Operations
•  Client

–  Transfers blocks of files to and from server via RPC

•  Server
–  Provides a conventional RPC interface at a well-known port

on each host
–  Stores files and directories

•  Problems?
–  Performance
–  Failures

12

C 3

CSE 486/586, Spring 2014

Improving Performance
•  Let’s cache!
•  Server-side

–  Typically done by OS & disks anyway
–  A disk usually has a cache built-in.
– OS caches file pages, directories, and file attributes that

have been read from the disk in a main memory buffer
cache.

•  Client-side
– On accessing data, cache it locally.

•  What’s a typical problem with caching?
– Consistency: cached data can become stale.

13 CSE 486/586, Spring 2014

(General) Caching Strategies
•  Read-ahead (prefetch)

– Read strategy
–  Anticipates read accesses and fetches the pages following

those that have most recently been read.
•  Delayed-write

– Write strategy
– New writes stored locally.
–  Periodically or when another client accesses, send back the

updates to the server
•  Write-through

– Write strategy
– Writes go all the way to the server’s disk

•  This is not an exhaustive list!

14

CSE 486/586, Spring 2014

NFS Client-Side Caching
•  Write-through, but only at close()

– Not every single write
– Helps performance

•  Other clients periodically check if there’s any new
write (next slide).

•  Multiple writers
– No guarantee
– Could be any combination of writes

•  Leads to inconsistency

15 CSE 486/586, Spring 2014

Validation
•  A client checks with the server about cached blocks.
•  Each block has a timestamp.

–  If the remote block is new, then the client invalidates the
local cached block.

•  Always invalidate after some period of time
–  3 seconds for files
–  30 seconds for directories

•  Written blocks are marked as “dirty.”

16

CSE 486/586, Spring 2014

Failures
•  Two design choices: stateful & stateless
•  Stateful

–  The server maintains all client information (which file, which
block of the file, the offset within the block, file lock, etc.)

– Good for the client-side process (just send requests!)
–  Becomes almost like a local file system (e.g., locking is easy

to implement)

•  Problem?
–  Server crash à lose the client state
–  Becomes complicated to deal with failures

17 CSE 486/586, Spring 2014

Failures
•  Stateless

– Clients maintain their own information (which file, which
block of the file, the offset within the block, etc.)

–  The server does not know anything about what a client
does.

–  Each request contains complete information (file name,
offset, etc.)

–  Easier to deal with server crashes (nothing to lose!)
•  NFS’s choice
•  Problem?

–  Locking becomes difficult.

18

C 4

CSE 486/586, Spring 2014

NFS
•  Client-side caching for improved performance
•  Write-through at close()

– Consistency issue

•  Stateless server
–  Easier to deal with failures
–  Locking is not supported (later versions of NFS support

locking though)

•  Simple design
–  Led to simple implementation, acceptable performance,

easier maintenance, etc.
– Ultimately led to its popularity

19 CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  Midterm scoring mostly done.

–  26 rejected, will need some manual verification.
– Will post the result by Friday.

•  PA3
– Will post the result by Friday.

•  PA4
– Will be released tonight.
–  Tester might not be ready though L

20

CSE 486/586, Spring 2014

New Trends in Distributed Storage
•  Geo-replication: replication with multiple data centers

–  Latency: serving nearby clients
–  Fault-tolerance: disaster recovery

•  Power efficiency: power-efficient storage
– Going green!
– Data centers consume lots of power

21 CSE 486/586, Spring 2014

Power Consumption
•  eBay: 16K servers, ~0.6 * 10^5 MWh, ~$3.7M
•  Akamai: 40K servers, ~1.7 * 10^5 MWh, ~$10M
•  Rackspace: 50K servers, ~2 * 10^5 MWh, ~$12M
•  Microsoft: > 200K servers, > 6 * 10^5 MWh, > $36M
•  Google: > 500K servers, > 6.3 * 10^5 MWh, > $38M
•  USA (2006): 10.9M servers, 610 * 10^5 MWh, $4.5B
•  Year-to-year: 1.7%~2.2% of total electricity use in US
•  http://ccr.sigcomm.org/online/files/p123.pdf
•  Question: can we reduce the energy footprint of a

distributed storage while preserving performance?

22

CSE 486/586, Spring 2014

One Extreme Design Point: FAWN
•  Fast Array of Wimpy Nodes

–  Andersen et al. (CMU & Intel Labs)

•  Coupling of low-power, efficient embedded CPUs
with flash storage

–  Embedded CPUs are more power efficient.
–  Flash is faster than disks, cheaper than memory, consumes

less power than either.

•  Performance target
– Not just queries (requests) per second
– Queries per second per Watt (queries per Joule)

23 CSE 486/586, Spring 2014

Embedded CPUs
•  Observation: many modern server storage workloads

do not need fast CPUs
– Not much computation necessary, mostly just small I/O
–  I.e., mostly I/O bound, not CPU bound
–  E.g., 1 KB values for thumbnail images, 100s of bytes for

wall posts, twitter messages, etc.
•  (Rough) Comparison

–  Server-class CPUs (superscalar quad-core): 100M
instructions/Joule

–  Embedded CPUs (low-frequency, single-core): 1B
instructions/Joule

24

C 5

CSE 486/586, Spring 2014

Flash (Solid State Disk)
•  Unlike magnetic disks, there’s no mechanical part

– Disks have motors that rotate disks & arms that move and
read.

•  Efficient I/O
–  Less than 1 Watt consumption
– Magnetic disks over 10 Watt

•  Fast random reads
–  << 1 ms
– Up to 175 times faster than random reads on magnetic disks

25 CSE 486/586, Spring 2014

Flash (Solid State Disk)
•  The smallest unit of operation (read/write) is a page

–  Typically 4KB
–  Initially all 1
–  A write involves setting some bits to 0
–  A write is fundamentally constrained.

•  Individual bits cannot be reset to 1.
– Requires an erasure operation that resets all bits to 1.
–  This erasure is done over a large block (e.g., 128KB), i.e.,

over multiple pages together.
–  Typical latency: 1.5 ms

•  Blocks wear out for each erasure.
–  100K cycles or 10K cycles depending on the technology.

26

CSE 486/586, Spring 2014

Flash (Solid State Disk)
•  Early design limitations

–  Slow write: a write to a random 4 KB page à the entire 128
KB erase block to be erased and rewritten à write
performance suffers

– Uneven wear: imbalanced writes result in uneven wear
across the device

•  Any idea to solve this?

27 CSE 486/586, Spring 2014

Flash (Solid State Disk)
•  Recent designs: log-based
•  The disk exposes a logical structure of pages &

blocks (called Flash Translation Layer).
–  Internally maintains remapping of blocks.

•  For rewrite of a random 4KB page:
– Read the surrounding entire 128KB erasure block into the

disk’s internal buffer
– Update the 4KB page in the disk’s internal buffer
– Write the entire block to a new or previously erased physical

block
–  Additionally, carefully choose this new physical block to

minimize uneven wear

28

CSE 486/586, Spring 2014

Flash (Solid State Disk)
•  E.g. sequential write till block 2, then random read of

a page in block 1

29

Block 0

Block 1

Block 2

Logical Structure

Block 0

Block 1

Block 2

Block 1

Physical Structure

Write Write

Write

Write

Write

Write

1) Read to
buffer

2) Update the
page

3) Write to a
different block
location

4) Garbage
collect the old
block

Free

Write

CSE 486/586, Spring 2014

FAWN Design
•  Wimpy nodes based on PCEngine Alix 3c2

– Commonly used for thin clients, network firewalls, wireless
routers, etc.

•  Single-core 500 MHz AMD Geode LX
•  256MB RAM at 400 MHz
•  100 MBps Ethernet
•  4 GB Sandisk CompactFlash
•  Power consumption

–  3W when idle
–  6W under heady load

30

C 6

CSE 486/586, Spring 2014

Summary
•  NSF

– Caching with write-through policy at close()
–  Stateless server

•  One power efficient design: FAWN
–  Embedded CPUs & Flash storage

31 CSE 486/586, Spring 2014 32

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

