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Recap 
•  Optimistic quorum 
•  Distributed transactions with replication 

– One copy serializability 
–  Primary copy replication 
– Read-one/write-all replication 
–  Active copies replication 
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Local File Systems 
•  File systems provides file management. 

– Name space 
–  API for file operations (create, delete, open, close, read, 

write, append, truncate, etc.) 
–  Physical storage management & allocation (e.g., block 

storage) 
–  Security and protection (access control) 

•  Name space is usually hierarchical. 
–  Files and directories 

•  File systems are mounted. 
– Different file systems can be in the same name space. 
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Traditional Distributed File Systems 
•  Goal: emulate local file system behaviors 

–  Files not replicated 
– No hard performance guarantee 

•  But, 
–  Files located remotely on servers 
– Multiple clients access the servers 

•  Why? 
– Users with multiple machines 
– Data sharing for multiple users 
– Consolidated data management (e.g., in an enterprise) 
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Requirements 
•  Transparency: a distributed file system should 

appear as if it’s a local file system 
–  Access transparency: it should support the same set of 

operations, i.e., a program that works for a local file system 
should work for a DFS. 

–  (File) Location transparency: all clients should see the same 
name space. 

– Migration transparency: if files move to another server, it 
shouldn’t be visible to users. 

–  Performance transparency: it should provide reasonably 
consistent performance. 

–  Scaling transparency: it should be able to scale 
incrementally by adding more servers. 
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Requirements 
•  Concurrent updates should be supported. 
•  Fault tolerance: servers may crash, msgs can be lost, 

etc. 
•  Consistency needs to be maintained. 
•  Security: access-control for files & authentication of 

users 
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File Server Architecture 
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Components 
•  Directory service 

– Meta data management 
– Creates and updates directories (hierarchical file structures) 
–  Provides mappings between user names of files and the 

unique file ids in the flat file structure. 
•  Flat file service 

–  Actual data management 
–  File operations (create, delete, read, write, access control, 

etc.) 
•  These can be independently distributed. 

–  E.g., centralized directory service & distributed flat file 
service 
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Sun NFS 
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VFS 
•  A translation layer that makes file systems pluggable 

& co-exist 
–  E.g., NFS, EXT2, EXT3, ZFS, etc. 

•  Keeps track of file systems that are available locally 
and remotely. 

•  Passes requests to appropriate local or remote file 
systems 

•  Distinguishes between local and remote files. 
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NFS Mount Service 
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NFS Basic Operations 
•  Client 

–  Transfers blocks of files to and from server via RPC 

•  Server 
–  Provides a conventional RPC interface at a well-known port 

on each host 
–  Stores files and directories 

•  Problems? 
–  Performance 
–  Failures 
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Improving Performance 
•  Let’s cache! 
•  Server-side 

–  Typically done by OS & disks anyway 
–  A disk usually has a cache built-in. 
– OS caches file pages, directories, and file attributes that 

have been read from the disk in a main memory buffer 
cache. 

•  Client-side 
– On accessing data, cache it locally. 

•  What’s a typical problem with caching? 
– Consistency: cached data can become stale. 
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(General) Caching Strategies 
•  Read-ahead (prefetch) 

– Read strategy 
–  Anticipates read accesses and fetches the pages following 

those that have most recently been read. 
•  Delayed-write 

– Write strategy 
– New writes stored locally. 
–  Periodically or when another client accesses, send back the 

updates to the server 
•  Write-through 

– Write strategy 
– Writes go all the way to the server’s disk 

•  This is not an exhaustive list! 
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NFS Client-Side Caching 
•  Write-through, but only at close() 

– Not every single write 
– Helps performance 

•  Other clients periodically check if there’s any new 
write (next slide). 

•  Multiple writers 
– No guarantee 
– Could be any combination of writes 

•  Leads to inconsistency 
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Validation 
•  A client checks with the server about cached blocks. 
•  Each block has a timestamp. 

–  If the remote block is new, then the client invalidates the 
local cached block. 

•  Always invalidate after some period of time 
–  3 seconds for files 
–  30 seconds for directories 

•  Written blocks are marked as “dirty.” 
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Failures 
•  Two design choices: stateful & stateless 
•  Stateful 

–  The server maintains all client information (which file, which 
block of the file, the offset within the block, file lock, etc.) 

– Good for the client-side process (just send requests!) 
–  Becomes almost like a local file system (e.g., locking is easy 

to implement) 

•  Problem? 
–  Server crash à lose the client state 
–  Becomes complicated to deal with failures 
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Failures 
•  Stateless 

– Clients maintain their own information (which file, which 
block of the file, the offset within the block, etc.) 

–  The server does not know anything about what a client 
does. 

–  Each request contains complete information (file name, 
offset, etc.) 

–  Easier to deal with server crashes (nothing to lose!) 
•  NFS’s choice 
•  Problem? 

–  Locking becomes difficult. 
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NFS 
•  Client-side caching for improved performance 
•  Write-through at close() 

– Consistency issue 

•  Stateless server 
–  Easier to deal with failures 
–  Locking is not supported (later versions of NFS support 

locking though) 

•  Simple design 
–  Led to simple implementation, acceptable performance, 

easier maintenance, etc. 
– Ultimately led to its popularity 
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CSE 486/586 Administrivia 
•  Midterm scoring mostly done. 

–  26 rejected, will need some manual verification. 
– Will post the result by Friday. 

•  PA3 
– Will post the result by Friday. 

•  PA4 
– Will be released tonight. 
–  Tester might not be ready though L 
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New Trends in Distributed Storage 
•  Geo-replication: replication with multiple data centers 

–  Latency: serving nearby clients 
–  Fault-tolerance: disaster recovery 

•  Power efficiency: power-efficient storage 
– Going green! 
– Data centers consume lots of power 
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Power Consumption 
•  eBay: 16K servers, ~0.6 * 10^5 MWh, ~$3.7M 
•  Akamai: 40K servers, ~1.7 * 10^5 MWh, ~$10M 
•  Rackspace: 50K servers, ~2 * 10^5 MWh, ~$12M 
•  Microsoft: > 200K servers, > 6 * 10^5 MWh, > $36M 
•  Google: > 500K servers, > 6.3 * 10^5 MWh, > $38M 
•  USA (2006): 10.9M servers, 610 * 10^5 MWh, $4.5B 
•  Year-to-year: 1.7%~2.2% of total electricity use in US 
•  http://ccr.sigcomm.org/online/files/p123.pdf 
•  Question: can we reduce the energy footprint of a 

distributed storage while preserving performance? 
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One Extreme Design Point: FAWN 
•  Fast Array of Wimpy Nodes 

–  Andersen et al. (CMU & Intel Labs) 

•  Coupling of low-power, efficient embedded CPUs 
with flash storage 

–  Embedded CPUs are more power efficient. 
–  Flash is faster than disks, cheaper than memory, consumes 

less power than either. 

•  Performance target 
– Not just queries (requests) per second 
– Queries per second per Watt (queries per Joule) 

23 CSE 486/586, Spring 2014 

Embedded CPUs 
•  Observation: many modern server storage workloads 

do not need fast CPUs 
– Not much computation necessary, mostly just small I/O 
–  I.e., mostly I/O bound, not CPU bound 
–  E.g., 1 KB values for thumbnail images, 100s of bytes for 

wall posts, twitter messages, etc. 
•  (Rough) Comparison 

–  Server-class CPUs (superscalar quad-core): 100M 
instructions/Joule 

–  Embedded CPUs (low-frequency, single-core): 1B 
instructions/Joule 
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Flash (Solid State Disk) 
•  Unlike magnetic disks, there’s no mechanical part 

– Disks have motors that rotate disks & arms that move and 
read. 

•  Efficient I/O 
–  Less than 1 Watt consumption 
– Magnetic disks over 10 Watt 

•  Fast random reads 
–  << 1 ms 
– Up to 175 times faster than random reads on magnetic disks 
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Flash (Solid State Disk) 
•  The smallest unit of operation (read/write) is a page 

–  Typically 4KB 
–  Initially all 1 
–  A write involves setting some bits to 0 
–  A write is fundamentally constrained. 

•  Individual bits cannot be reset to 1. 
– Requires an erasure operation that resets all bits to 1. 
–  This erasure is done over a large block (e.g., 128KB), i.e., 

over multiple pages together. 
–  Typical latency: 1.5 ms 

•  Blocks wear out for each erasure. 
–  100K cycles or 10K cycles depending on the technology. 
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Flash (Solid State Disk) 
•  Early design limitations 

–  Slow write: a write to a random 4 KB page à the entire 128 
KB erase block to be erased and rewritten à write 
performance suffers 

– Uneven wear: imbalanced writes result in uneven wear 
across the device 

•  Any idea to solve this? 
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Flash (Solid State Disk) 
•  Recent designs: log-based 
•  The disk exposes a logical structure of pages & 

blocks (called Flash Translation Layer). 
–  Internally maintains remapping of blocks. 

•  For rewrite of a random 4KB page: 
– Read the surrounding entire 128KB erasure block into the 

disk’s internal buffer 
– Update the 4KB page in the disk’s internal buffer 
– Write the entire block to a new or previously erased physical 

block 
–  Additionally, carefully choose this new physical block to 

minimize uneven wear 
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Flash (Solid State Disk) 
•  E.g. sequential write till block 2, then random read of 

a page in block 1 
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FAWN Design 
•  Wimpy nodes based on PCEngine Alix 3c2 

– Commonly used for thin clients, network firewalls, wireless 
routers, etc. 

•  Single-core 500 MHz AMD Geode LX 
•  256MB RAM at 400 MHz 
•  100 MBps Ethernet 
•  4 GB Sandisk CompactFlash  
•  Power consumption 

–  3W when idle 
–  6W under heady load 
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Summary 
•  NSF 

– Caching with write-through policy at close() 
–  Stateless server 

•  One power efficient design: FAWN 
–  Embedded CPUs & Flash storage 
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