
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Paxos --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap
•  Paxos is a consensus algorithm.

–  It allows multiple acceptors accepting multiple proposals.

•  A proposer always makes sure that,
–  If a value has been chosen, it always proposes the same

value.
•  Plan

ü Brief history
ü The protocol itself
– How to “discover” the protocol
–  A real example: Google Chubby

2

CSE 486/586, Spring 2014

Paxos Phase 1
•  A proposer chooses its proposal number N and

sends a prepare request to acceptors.
–  “Hey, have you accepted any proposal yet?”

•  An acceptor needs to reply:
–  If it accepted anything, the accepted proposal and its value

with the highest proposal number less than N
–  A promise to not accept any proposal numbered less than N

any more (to make sure that it doesn’t alter the result of the
reply).

3 CSE 486/586, Spring 2014

Paxos Phase 2
•  If a proposer receives a reply from a majority, it

sends an accept request with the proposal (N, V).
–  V: the value from the highest proposal number N from the

replies (i.e., the accepted proposals returned from acceptors
in phase 1)

– Or, if no accepted proposal was returned in phase 1, a new
value to propose.

•  Upon receiving (N, V), acceptors either:
–  Accept it
– Or, reject it if there was another prepare request with N’

higher than N, and it replied to it.

4

CSE 486/586, Spring 2014

Paxos Phase 3
•  Learners need to know which value has been

chosen.
•  Many possibilities
•  One way: have each acceptor respond to all learners

– Might be effective, but expensive

•  Another way: elect a “distinguished learner”
–  Acceptors respond with their acceptances to this process
–  This distinguished learner informs other learners.
–  Failure-prone

•  Mixing the two: a set of distinguished learners

5 CSE 486/586, Spring 2014

What We’ll Do Today
•  Derive the requirements we want to satisfy.
•  See how Paxos satisfies these requirements.
•  This process shows you how to come up with a

distributed protocol that has clearly stated
correctness conditions.

– No worries about corner cases!
– We can learn what Paxos is covering and what it’s not.

6

C 2

CSE 486/586, Spring 2014

Review: Assumptions & Goals
•  The network is asynchronous with message delays.
•  The network can lose or duplicate messages, but

cannot corrupt them.
•  Processes can crash and recover.
•  Processes are non-Byzantine (only crash-stop).
•  Processes have permanent storage.
•  Processes can propose values.

•  The goal: every process agrees on a value out of the
proposed values.

7 CSE 486/586, Spring 2014

Review: Desired Properties
•  Safety

– Only a value that has been proposed can be chosen
– Only a single value is chosen
–  A process never learns that a value has been chosen unless

it has been
•  Liveness

–  Some proposed value is eventually chosen
–  If a value is chosen, a process eventually learns it

8

CSE 486/586, Spring 2014

Review: Roles of a Process
•  Three roles
•  Proposers: processes that propose values
•  Acceptors: processes that accept values

– Majority acceptance à choosing the value
•  Learners: processes that learn the outcome (i.e.,

chosen value)
•  In reality, a process can be any one, two, or all three.

9 CSE 486/586, Spring 2014

Again, First Attempt
•  Let’s just have one acceptor, choose the first one that

arrives, & tell the proposers about the outcome.

•  Why pick the first msg?
–  It should work with one proposer proposing just one value.

10

P0

P1

P2

A0

V: 0

V: 10

V: 3

CSE 486/586, Spring 2014

Again, Second Attempt
•  Let’s have multiple acceptors; each accepts the first

one; then all choose the majority and tell the
proposers about the outcome.

11

P0

P1

P2

A1

A0

A2

V: 0

V: 10

V: 3

CSE 486/586, Spring 2014

Again, Second Attempt
•  What should we do if only one proposer proposes a

value?

12

P0

A1

A0

A2

V: 0

P1

P2

C 3

CSE 486/586, Spring 2014

First Requirement
•  In the absence of failure or msg loss, we want a

value to be chosen even if only one value is
proposed by a single proposer.

•  This gives our first requirement.

•  P1. An acceptor must accept the first proposal that it
receives.

13 CSE 486/586, Spring 2014

Problem with the Second Attempt
•  One example, but many other possibilities

14

P0

P1

P2

A1

A0

A2

V: 0

V: 10

V: 3

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA3 results are out.
•  PA4 tester is out, partially.
•  Midterm results will be out tonight.

15 CSE 486/586, Spring 2014

Midterm
•  Max: 50
•  Min: 5
•  Median: 28
•  Average: 28.5

16

0

10

20

30

40

50

60

1 10

19

28

37

46

55

64

73

82

91

10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

Series1

CSE 486/586, Spring 2014

Paxos
•  Let’s have each acceptor accept multiple proposals.

–  “Hope” that one of the multiple accepted proposals will have
a vote from a majority (will get back to this later)

•  Paxos: how do we select one value when there are
multiple acceptors accepting multiple proposals?

17 CSE 486/586, Spring 2014

Accepting Multiple Proposals
•  There has to be a way to distinguish each proposal.

–  Let’s use a globally-unique, strictly increasing sequence
numbers, i.e., there should be no tie in any proposed values.

–  E.g., (per-process number).(process id) == 3.1, 3.2, 4.1, etc.
– New proposal format: (proposal #, value)

•  One issue
–  If acceptors accept multiple proposals, multiple proposals

might each have a majority.
–  If each proposal has a different value, we can’t reach

consensus.

18

C 4

CSE 486/586, Spring 2014

Second Requirement
•  We need to guarantee that once a majority chooses

a value, all majorities should choose the same value.
–  I.e., all chosen proposals have the same value.
–  This guarantees only one value to be chosen.
–  This gives our next requirement.

•  P2. If a proposal with value V is chosen, then every
higher-numbered proposal that is chosen has value
V.

19 CSE 486/586, Spring 2014

Strengthening P2
•  Let’s see how a protocol can guarantee P2.

–  P2. If a proposal with value V is chosen, then every higher-
numbered proposal that is chosen has value V.

•  First, to be chosen, a proposal must be accepted by
an acceptor.

•  So we can strengthen P2:

•  P2a. If a proposal with value V is chosen, then every
higher-numbered proposal accepted by any acceptor
has value V.

•  By doing this, we have change the requirement to be
something that acceptors need to guarantee.

20

CSE 486/586, Spring 2014

Strengthening P2
•  Guaranteeing P2a might be difficult because of P1:

–  P1. An acceptor must accept the first proposal that it
receives.

–  P2a. If a proposal with value V is chosen, then every higher-
numbered proposal accepted by any acceptor has value V.

•  We might violate P2a if we guarantee P1.
–  A proposer might propose a different value with a higher

proposal number.
•  Scenario

–  A value V is chosen.
–  An acceptor C never receives any proposal (due to

asynchrony).
–  A proposer fails, recovers, and issues a different proposal

with a higher number and a different value.
– C accepts it (violating P2a).

21 CSE 486/586, Spring 2014

Combining P1 & P2a
•  Guaranteeing P2a is not enough because of P1:

–  P1. An acceptor must accept the first proposal that it
receives.

–  P2a. If a proposal with value V is chosen, then every higher-
numbered proposal accepted by any acceptor has value V.

•  P2b. If a proposal with value V is chosen, then every
higher-numbered proposal issued by any proposer
has value V.

•  Now we have changed the requirement P2 to
something that each proposer has to guarantee.

22

CSE 486/586, Spring 2014

How to Guarantee P2b
•  P2b. If a proposal with value v is chosen, then every

higher-numbered proposal issued by any proposer
has value V.

•  Two cases for a proposer proposing (N, V)
–  If a proposer knows that there is and will be no proposal N’ <

N chosen by a majority, it can propose any value.
–  If that is not the case, then it has to make sure that it

proposes the same value of the proposal N’ < N that has
been or will be chosen by a majority.

23 CSE 486/586, Spring 2014

“Invariant” to Maintain

•  P2c. For any V and N, if a proposal with value V and

number N is issued, then there is a set S consisting
of a majority of acceptors such that either

–  (A) no acceptor in S has accepted or will accept any
proposal numbered less than N or,

–  (B) V is the value of the highest-numbered proposal among
all proposals numbered less than N accepted by the
acceptors in S.

24

C 5

CSE 486/586, Spring 2014

Paxos Phase 1
•  A proposer chooses its proposal number N and

sends a prepare request to acceptors.
•  Maintains P2c:

–  P2c. For any V and N, if a proposal with value V and number
N is issued, then there is a set S consisting of a majority of
acceptors such that either (a) no acceptor in S has accepted
or will accept any proposal numbered less than N or (b) V is
the value of the highest-numbered proposal among all
proposals numbered less than N accepted by the acceptors
in S.

•  Acceptors need to reply:
–  A promise to not accept any proposal numbered less than N

any more (to make sure that the protocol doesn’t deal with
old proposals)

–  If there is, the accepted proposal with the highest number
less than N

25 CSE 486/586, Spring 2014

Paxos Phase 2
•  If a proposer receives a reply from a majority, it

sends an accept request with the proposal (N, V).
–  V: the highest N from the replies (i.e., the accepted

proposals returned from acceptors in phase 1)
– Or, if no accepted proposal was returned in phase 1, any

value.
•  Upon receiving (N, V), acceptors need to maintain

P2c by either:
–  Accepting it
– Or, rejecting it if there was another prepare request with N’

higher than N, and it replied to it.

26

CSE 486/586, Spring 2014

Paxos Phase 3
•  Learners need to know which value has been

chosen.
•  Many possibilities
•  One way: have each acceptor respond to all learners

– Might be effective, but expensive

•  Another way: elect a “distinguished learner”
–  Acceptors respond with their acceptances to this process
–  This distinguished learner informs other learners.
–  Failure-prone

•  Mixing the two: a set of distinguished learners

27 CSE 486/586, Spring 2014

Problem: Progress (Liveness)
•  There’s a race condition for proposals.
•  P0 completes phase 1 with a proposal number N0
•  Before P0 starts phase 2, P1 starts and completes

phase 1 with a proposal number N1 > N0.
•  P0 performs phase 2, acceptors reject.
•  Before P1 starts phase 2, P0 restarts and completes

phase 1 with a proposal number N2 > N1.
•  P1 performs phase 2, acceptors reject.
•  …(this can go on forever)
•  How to solve this?

– Next slide

28

CSE 486/586, Spring 2014

Providing Liveness
•  Solution: elect a distinguished proposer

–  I.e., have only one proposer

•  If the distinguished proposer can successfully
communicate with a majority, the protocol guarantees
liveness.

–  I.e., if a process plays all three roles, Paxos can tolerate
failures f < 1/2 * N.

•  Still needs to get around FLP for the leader election,
e.g., having a failure detector

29 CSE 486/586, Spring 2014

Summary
•  Paxos

–  A consensus algorithm
– Handles crash-stop failures (f < 1/2 * N)

•  Three phases
–  Phase 1: prepare request/reply
–  Phase 2: accept request/reply
–  Phase 3: learning of the chosen value

30

C 6

CSE 486/586, Spring 2014 31

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

