
C 1 

CSE 486/586, Spring 2014 

CSE 486/586 Distributed Systems 
Google Chubby Lock Service 

Steve Ko 
Computer Sciences and Engineering 

University at Buffalo 
 
 
 

CSE 486/586, Spring 2014 

Recap 
•  Paxos is a consensus algorithm. 

–  Proposers? 
–  Acceptors? 
–  Learners? 

•  A proposer always makes sure that, 
–  If a value has been chosen, it always proposes the same 

value. 

•  Three phases 
–  Prepare: “What’s the last proposed value?” 
–  Accept: “Accept my proposal.” 
–  Learn: “Let’s tell other guys about the consensus.” 

2 

CSE 486/586, Spring 2014 

Paxos Phase 1 
•  A proposer chooses its proposal number N and 

sends a prepare request to acceptors. 
•  Maintains P2c. 
•  Acceptors need to reply: 

–  A promise to not accept any proposal numbered less than N 
any more (to make sure that the protocol doesn’t deal with 
old proposals) 

–  If there is, the accepted proposal with the highest number 
less than N 

3 CSE 486/586, Spring 2014 

Paxos Phase 2 
•  If a proposer receives a reply from a majority, it 

sends an accept request with the proposal (N, V). 
–  V: the highest N from the replies (i.e., the accepted 

proposals returned from acceptors in phase 1) 
– Or, if no accepted proposal was returned in phase 1, any 

value. 
•  Upon receiving (N, V), acceptors need to maintain 

P2c by either: 
–  Accepting it 
– Or, rejecting it if there was another prepare request with N’ 

higher than N, and it replied to it. 

4 

CSE 486/586, Spring 2014 

Paxos Phase 3 
•  Learners need to know which value has been 

chosen. 
•  Many possibilities 
•  One way: have each acceptor respond to all learners 

– Might be effective, but expensive 

•  Another way: elect a “distinguished learner” 
–  Acceptors respond with their acceptances to this process 
–  This distinguished learner informs other learners. 
–  Failure-prone 

•  Mixing the two: a set of distinguished learners 

5 CSE 486/586, Spring 2014 

Google Chubby 
•  A lock service 

–  Enables multiple clients to share a lock and coordinate 

•  A coarse-grained lock service 
–  Locks are supposed to be held for hours and days, not 

seconds. 
•  In addition, it can store small files. 
•  Design target 

–  Low-rate locking/unlocking 
–  Low-volume information storage 

•  Why would you need something like this? 

6 



C 2 

CSE 486/586, Spring 2014 

Google Infrastructure Overview 
•  Google File System (GFS) 

– Distributed file system 

•  Bigtable 
–  Table-based storage 

•  MapReduce 
–  Programming paradigm & its execution framework 

•  These rely on Chubby. 
•  Warning: the next few slides are intentionally shallow. 

–  The only purpose is to give some overview. 

7 CSE 486/586, Spring 2014 

Google File System 
•  A cluster file system 

–  Lots of storage (~12 disks per machine) 
– Replication of files to combat failures 

8 

CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	

CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	

CSE 486/586, Spring 2014 

Google File System 
•  Files are divided into chunks 

–  64MB/chunk 
– Distributed & replicated over servers 

•  Two entities 
– One master 
– Chunk servers 

9 CSE 486/586, Spring 2014 

Google File System 
•  Master maintains all file system metadata 

– Namespace 
–  Access control info 
–  Filename to chunks mappings 
– Current locations of chunks 

•  Master replicates its data for fault tolerance 
•  Master periodically communicates with all chunk 

servers 
–  Via heartbeat messages 
–  To get state and send commands 

•  Chunk servers respond to read/write requests & 
master’s commands. 

10 

CSE 486/586, Spring 2014 

Bigtable 
•  Table-based storage on top of GFS 
•  Main storage for a lot of Google services 

– Google Analytics 
– Google Finance 
–  Personalized search 
– Google Earth & Google Maps 
–  Etc. 

•  Gives a large logical table view to the clients 
–  Logical tables are divided into tablets and distributed over 

the Bigtable servers. 

•  Three entities 
– Client library 
– One master 
–  Tablet servers 

11 CSE 486/586, Spring 2014 

Bigtable 
•  Table: rows & columns 

–  (row, column, timestamp) -> cell contents 

•  E.g., web pages and relevant info. 
– Rows: URLs 
– Columns: actual web page, (out-going) links, (incoming) 

links, etc. 
–  Versioned: using timestamps 

12 



C 3 

CSE 486/586, Spring 2014 

MapReduce 
•  Programming paradigm 

– Map: (key, value) à list of (intermediate key, intermediate 
value) 

– Reduce: (intermediate key, list of intermediate values) à 
(output key, output value) 

–  Programmers write Map & Reduce functions within the 
interface given (above). 

•  Execution framework 
– Google MapReduce executes Map & Reduce functions over 

a cluster of servers 
– One master 
– Workers 

13 CSE 486/586, Spring 2014 

MapReduce 
•  Execution flow 

14 

Master	

Input Files	 Output	

Map workers	
Reduce workers	

M 

M 

M 

R 

R 

Input files sent to 
map tasks Intermediate 

keys partitioned 
into reduce tasks 

CSE 486/586, Spring 2014 

CSE 486/586 Administrivia 
•  PA4 tester is complete. 
•  Please start right away! This might not be easy. 

15 CSE 486/586, Spring 2014 

Common Theme 
•  One master & multiple workers 
•  Why one master? 

–  This design simplifies lots of things. 
– Mainly used to handle meta data; it’s important to reduce the 

load of a single master. 
– No need to deal with consistency issues 
– Mostly fit in the memory à very fast access 

•  Obvious problem: failure 
– We can have one primary and backups. 
– We can then elect the primary out of the peers. 

•  How would you use a lock service like Chubby? 

16 

CSE 486/586, Spring 2014 

Chubby 
•  A coarse-grained lock service 

–  Locks are supposed to be held for hours and days, not 
seconds. 

–  In addition, it can store small files. 

•  Used for various purposes (e.g., the master election) 
for GFS, Bigtable, MapReduce 

–  Potential masters try to create a lock on Chubby 
–  The first one that gets the lock becomes the master 

•  Also used for storing small configuration data and 
access control lists 

17 CSE 486/586, Spring 2014 

Chubby Organization 
•  Chubby cell (an instance) has typically 5 replicas. 

–  But each cell still serves tens of thousands of clients 

•  Among 5 replicas, one master is elected. 
–  Any one replica can be the master. 
–  They decide who is the master via Paxos. 

•  The master handles all requests. 
 

18 



C 4 

CSE 486/586, Spring 2014 

Client Interface 
•  File system interface 

–  From a client’s point of view, it’s almost like accessing a file 
system. 

•  Typical name: /ls/foo/wombat/pouch 
–  ls (lock service) common to all Chubby names 
–  foo is the name of the Chubby cell 
–  /wombat/pouch interpreted within Chubby cell 

•  Contains files and directories, called nodes 
–  Any node can be a reader-writer lock: reader (shared) mode 

& writer (exclusive) mode 
–  Files can contain a small piece of information 
–  Just like a file system, each file is associated with some 

meta-data, such as access control lists. 

19 CSE 486/586, Spring 2014 

Client-Chubby Interaction 
•  Clients (library) send KeepAlive messages 

–  Periodic handshakes 
–  If Chubby doesn’t hear back from a client, it’s considered to 

be failed. 

•  Clients can subscribed to events. 
–  E.g., File contents modified, child node added, removed, or 

modified, lock become invalid, etc. 

•  Clients cache data (file & meta data) 
–  If the cached data becomes stale, the Chubby master 

invalidates it. 

•  They Chubby master piggybacks events or cache 
invalidations on the KeepAlives 

–  Ensures clients keep cache consistent 

20 

CSE 486/586, Spring 2014 

Client Lock Usage 
•  Each lock has a “sequencer” that is roughly a version 

number. 
•  Scenario 

–  A process holding a lock L issues a request R 
–  It then fails & lock gets freed. 
–  Another process acquires L and perform some action before 

R arrives at Chubby. 
– R may be acted on without the protection of L, and 

potentially on inconsistent data. 

21 CSE 486/586, Spring 2014 

Client API 
•  open() & close() 
•  GetContentsAndStat() 

– Reads the whole file and meta-data 

•  SetContents() 
– Writes to the file 

•  Acquire(), TryAcquire(), Release() 
–  Acquires and releases a lock associated with the file 

•  GetSequencer(), SetSequencer(), CheckSequencer() 

22 

CSE 486/586, Spring 2014 

Primary Election Example 
•  All potential primaries open the lock file and attempt 

to acquire the lock. 
•  One succeeds and becomes the primary, others 

become replicas. 
•  Primary writes identity into the lock file with 

SetContents(). 
•  Clients and replicas read the lock file with 

GetContentsAndStat(). 
•  In response to a file-modification event. 

23 CSE 486/586, Spring 2014 

Chubby Usage 
•  A snapshot of a Chubby cell 

 
•  Few clients hold locks, and shared locks are rare. 

– Consistent with locking being used for primary election and 
partitioning data among replicas. 

24 



C 5 

CSE 486/586, Spring 2014 25 

Acknowledgements 
•  These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC). 


