CSE 486/586 Distributed Systems
Google Chubby Lock Service

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

Recap

» Paxos is a consensus algorithm.
— Proposers?
— Acceptors?
— Learners?
* A proposer always makes sure that,
— If a value has been chosen, it always proposes the same
value.
* Three phases
— Prepare: “What's the last proposed value?”
— Accept: “Accept my proposal.”
— Learn: “Let’s tell other guys about the consensus.”

CSE 486/586, Spring 2014

Paxos Phase 1

« A proposer chooses its proposal number N and
sends a prepare request to acceptors.

» Maintains P2c.
 Acceptors need to reply:

— A promise to not accept any proposal numbered less than N
any more (to make sure that the protocol doesn’t deal with
old proposals)

— If there is, the accepted proposal with the highest number
less than N

CSE 486/586, Spring 2014 3

Paxos Phase 2

« If a proposer receives a reply from a majority, it
sends an accept request with the proposal (N, V).
— V: the highest N from the replies (i.e., the accepted
proposals returned from acceptors in phase 1)
— Or, if no accepted proposal was returned in phase 1, any
value.
» Upon receiving (N, V), acceptors need to maintain
P2c by either:
— Accepting it
— Or, rejecting it if there was another prepare request with N’
higher than N, and it replied to it.

CSE 486/586, Spring 2014

Paxos Phase 3

« Learners need to know which value has been
chosen.

* Many possibilities
« One way: have each acceptor respond to all learners
— Might be effective, but expensive
« Another way: elect a “distinguished learner”
— Acceptors respond with their acceptances to this process
— This distinguished learner informs other learners.
— Failure-prone
» Mixing the two: a set of distinguished learners

CSE 486/586, Spring 2014 5

Google Chubby

* Alock service
— Enables muiltiple clients to share a lock and coordinate
« A coarse-grained lock service

— Locks are supposed to be held for hours and days, not
seconds.

< In addition, it can store small files.
« Design target
— Low-rate locking/unlocking
— Low-volume information storage
* Why would you need something like this?

CSE 486/586, Spring 2014

Google Infrastructure Overview
* Google File System (GFS)

— Distributed file system
« Bigtable
— Table-based storage
* MapReduce
— Programming paradigm & its execution framework
« These rely on Chubby.
» Warning: the next few slides are intentionally shallow.
— The only purpose is to give some overview.

CSE 486/586, Spring 2014 7

Google File System

* A cluster file system
— Lots of storage (~12 disks per machine)
— Replication of files to combat failures

CP
g

CSE 486/586, Spring 2014 8

Google File System

« Files are divided into chunks

— 64MB/chunk

— Distributed & replicated over servers
» Two entities

— One master

— Chunk servers

CSE 486/586, Spring 2014 9

Google File System

« Master maintains all file system metadata

— Namespace

— Access control info

— Filename to chunks mappings

— Current locations of chunks
Master replicates its data for fault tolerance
Master periodically communicates with all chunk
servers

— Via heartbeat messages

— To get state and send commands
Chunk servers respond to read/write requests &
master’'s commands.

CSE 486/586, Spring 2014 10

Bigtable

» Table-based storage on top of GFS
« Main storage for a lot of Google services
— Google Analytics
— Google Finance
— Personalized search
— Google Earth & Google Maps
- Etc.
 Gives a large logical table view to the clients
— Logical tables are divided into tablets and distributed over
the Bigtable servers.
« Three entities
— Client library
— One master
— Tablet servers
CSE 486/586, Spring 2014 1

"com.cnn.www" —t

Bigtable

« Table: rows & columns

— (row, column, timestamp) -> cell contents
» E.g., web pages and relevant info.

— Rows: URLs

— Columns: actual web page, (out-going) links, (incoming)
links, etc.

— Versioned: using timestamps

"contents:" "anchor:cnnsi.com” "anchor:my.look.ca”
! !)

CSE 486/586, Spring 2014 12

Ny

MapReduce

* Programming paradigm

— Map: (key, value) - list of (intermediate key, intermediate
value)

— Reduce: (intermediate key, list of intermediate values) >
(output key, output value)

— Programmers write Map & Reduce functions within the
interface given (above).
» Execution framework

— Google MapReduce executes Map & Reduce functions over
a cluster of servers

— One master
— Workers

CSE 486/586, Spring 2014 13

E\B\D\’

il 0 EI/D/ Output

MapReduce
» Execution flow
Master
F

|

7

I t Fil
nput Files Reduce workers

lap workers

CSE 486/586, Spring 2014 14

CSE 486/586 Administrivia

* PA4 tester is complete.
» Please start right away! This might not be easy.

CSE 486/586, Spring 2014 15

Common Theme

* One master & multiple workers
¥« Why one master?
— This design simplifies lots of things.

— Mainly used to handle meta data; it's important to reduce the
load of a single master.

— No need to deal with consistency issues
— Mostly fit in the memory > very fast access
» Obvious problem: failure
— We can have one primary and backups.
— We can then elect the primary out of the peers.
* How would you use a lock service like Chubby?

CSE 486/586, Spring 2014 16

Chubby

» A coarse-grained lock service

— Locks are supposed to be held for hours and days, not
seconds.

— In addition, it can store small files.
« Used for various purposes (e.g., the master election)
for GFS, Bigtable, MapReduce
— Potential masters try to create a lock on Chubby
— The first one that gets the lock becomes the master

« Also used for storing small configuration data and
access control lists

CSE 486/586, Spring 2014 17

Chubby Organization

« Chubby cell (an instance) has typically 5 replicas.
— But each cell still serves tens of thousands of clients

« Among 5 replicas, one master is elected.
— Any one replica can be the master.
— They decide who is the master via Paxos.

* The master handles all requests.

client processes O

CSE 486/586, Spring 2014 18

Client Interface

« File system interface
— From a client’s point of view, it's almost like accessing a file
system.
« Typical name: /Is/foo/wombat/pouch
— Is (lock service) common to all Chubby names
— foo is the name of the Chubby cell
— /wombat/pouch interpreted within Chubby cell
+ Contains files and directories, called nodes

— Any node can be a reader-writer lock: reader (shared) mode
& writer (exclusive) mode

— Files can contain a small piece of information

— Just like a file system, each file is associated with some
meta-data, such as access control lists.

CSE 486/586, Spring 2014 19

Client-Chubby Interaction

« Clients (library) send KeepAlive messages
— Periodic handshakes

— If Chubby doesn't hear back from a client, it's considered to
be failed.

« Clients can subscribed to events.

— E.g., File contents modified, child node added, removed, or
modified, lock become invalid, etc.

« Clients cache data (file & meta data)

— If the cached data becomes stale, the Chubby master
invalidates it.

» They Chubby master piggybacks events or cache
invalidations on the KeepAlives

— Ensures clients keep cache consistent

CSE 486/586, Spring 2014 20

Client Lock Usage

« Each lock has a “sequencer” that is roughly a version
number.
« Scenario
— A process holding a lock L issues a request R
— It then fails & lock gets freed.

— Another process acquires L and perform some action before
R arrives at Chubby.

— R may be acted on without the protection of L, and
potentially on inconsistent data.

CSE 486/586, Spring 2014 21

Client API

« open() & close()
» GetContentsAndStat()
— Reads the whole file and meta-data
« SetContents()
— Writes to the file
* Acquire(), TryAcquire(), Release()
— Acquires and releases a lock associated with the file
» GetSequencer(), SetSequencer(), CheckSequencer()

CSE 486/586, Spring 2014 22

Primary Election Example

All potential primaries open the lock file and attempt
to acquire the lock.

One succeeds and becomes the primary, others
become replicas.

Primary writes identity into the lock file with
SetContents().

Clients and replicas read the lock file with
GetContentsAndStaty().

In response to a file-modification event.

CSE 486/586, Spring 2014 23

Chubby Usage

» A snapshot of a Chubby cell

N _ stored files 22k
time since last fail-over 18 days 0-1k bytes 90%
fail-over duration 14s 1k-10k bytes 10%
active clients (direct) 22k > 10k bytes 0.2%
additional proxied clients 32k naming-related 46%
files open 12k mirrored ACLs & config info 27%
naming-related 60% S]:li:‘r;(:a]flgmblc meta-data I;ZZ
c%ieyl—is-caching-ﬁle entries 230k RPCPral o T2Ks
distinct files cached 24k KeepAlive 93%
i 32K GetStat 2%

exclusive locks 1k Open 1%
shared locks 0 CreateSession 1%
siored drecionies 3 GetContentsAndStat 0.4%
0.1% SetContents 680ppm

Acquire 31ppm

« Few clients hold locks, and shared locks are rare.

— Consistent with locking being used for primary election and
partitioning data among replicas.

CSE 486/586, Spring 2014 24

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2014

(¢,

