

Recap

- Three types of functions

 Cryptographic hash, symmetric key crypto, asymmetric key crypto
 Cryptographic hash
 - Easy to compute h(m)
 - Hard to find an *m*, given h(m)
 Hard to find two values that hash to the same h(m)
- How to find collisions?
- Birthday paradox: for 50% prob. & m bits, ~ $2^{m/2}$ numbers Symmetric key crypto
- MAC: Compute H = AES_K(SHA1 (M)) & Send <M, H>
- Asymmetric key crypto
 Guarantees rely on computational hardness

CSE 486/586, Spring 2014

Digital Certificates

- A digital certificate is a statement signed by a third party principal, and can be reused
 e.g., Verisign Certification Authority (CA)
- To be useful, certificates must have:
 - A standard format, for construction and interpretation
 - A protocol for constructing <u>chains</u> of certificates
- A trusted authority at the end of the chain
- Example
 - When facebook sends you the public key, it also sends a signature for the public key signed by Verisign.
 - You pre-store Verisign's public keys & certificates (selfsigned by Verisign), i.e., you have already established trust with Verisign.
 - Use Verisign's public key to verify facebook's public key.
 - CSE 486/586, Spring 2014

X.509 Certificates

- The most widely used standard format for certificates
- Format
 - Subject: Distinguished Name, Public Key
 - Issuer: Distinguished Name, Signature
 - Period of validity: Not Before Date, Not After Date
 Administrative information: Version, Serial Number
 - Administrative information:
 Extended information
- Binds a public key to the subject
- A subject: person, organization, etc.
- The binding is in the signature issued by an issuer.
- You need to either trust the issuer directly or indirectly (by establishing a root of trust).

CSE 486/586, Spring 2014

<section-header><section-header>

CSE 486/586, Spring 2014

Summary

- Digital certificates

 Binds a public key to its owner
 Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

CSE 486/586, Spring 2014

25

Acknowledgements

These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Jennifer Rexford (Princeton) and Michael Freedman (Princeton).

CSE 486/586, Spring 2014

26