Recap

• Three types of functions
 – Cryptographic hash, symmetric key crypto, asymmetric key crypto
• Cryptographic hash
 – Easy to compute \(h(m) \)
 – Hard to find \(m \), given \(h(m) \)
 – Hard to find two values that hash to the same \(h(m) \)
• How to find collisions?
 – Birthday paradox: for 50% prob. & \(m \) bits, \(\sim 2^{m/2} \) numbers
• Symmetric key crypto
 – MAC: Compute \(H = AES_k(\text{SHA1}(M)) \) & Send \(<M, H> \)
• Asymmetric key crypto
 – Guarantees rely on computational hardness

Recap: Digital Signatures

• Method
 – Signer: compute \(H = RSA_k(\text{SHA1}(M)) \) & send \(<M, H> \)
 – Verifier: compute \(H' = RSA_k(H) \) & verify \(H' = \text{SHA1}(M) \)
• Not just integrity, but also authenticity

Heard of Firesheep?

• Firesheep
 – A Firefox extension
 – A packet sniffer to intercept unencrypted cookies from certain websites (such as Facebook and Twitter)
 – Allows the user to take on the log-in credentials of the victim
• Solution?
 – Encrypt your traffic!
 – This is before Facebook started using HTTPS, but now Facebook uses HTTPS.

“Securing” HTTP

• Threat model
 – Eavesdropper listening on conversation (confidentiality)
 – Man-in-the-middle modifying content (integrity)
 – Adversary impersonating desired website (authentication, and confidentiality)
• Enter HTTP-S
 – HTTP sits on top of secure channels
 – All (HTTP) bytes written to secure channel are encrypted and authenticated

Encrypted Communication

Hey, I want to be more secure

Sure, use this public key and encrypt your traffic

Key: f-pub

(keyed (encrypted communication))

• What is wrong with this?
 – How do you know you’re actually talking to Facebook and f-pub belongs to Facebook?
Digital Certificates

- A digital certificate is a statement signed by a third party principal, and can be reused
 - e.g., Verisign Certification Authority (CA)
- To be useful, certificates must have:
 - A standard format, for construction and interpretation
 - A protocol for constructing chains of certificates
 - A trusted authority at the end of the chain
- Example
 - When Facebook sends you the public key, it also sends a signature for the public key signed by Verisign.
 - You pre-store Verisign’s public keys and certificates (self-signed by Verisign), i.e., you have already established trust with Verisign.
 - Use Verisign’s public key to verify Facebook’s public key.

X.509 Certificates

- The most widely used standard format for certificates
- Format
 - Subject: Distinguished Name, Public Key
 - Issuer: Distinguished Name, Signature
 - Period of validity: Not Before Date, Not After Date
 - Administrative information: Version, Serial Number
 - Extended information
 - Binds a public key to the subject
 - A subject: person, organization, etc.
 - The binding is in the signature issued by an issuer.
 - You need to either trust the issuer directly or indirectly (by establishing a root of trust).

Transport Layer Security (TLS)

- SSL (Secure Socket Layer) was developed by Netscape for electronic transaction security.
- SSL was adopted as TLS as an Internet standard.
- A protocol layer is added below the application layer for:
 - Negotiating encryption and authentication methods.
 - Bootstrapping secure communication
- It consists of two layers:
 - The Record Protocol Layer implements a secure channel by encrypting and authenticating messages
 - The Handshake Layer establishes and maintains a secure session between two nodes.

TLS Protocol Stack

- TLS Handshake protocol
- TLS Change Cipher Spec Protocol
- TLS Alert Protocol
- HTTP
- Telnet

- TLS Record Protocol
- Transport layer (usually TCP)
- Network layer (usually IP)

- TLS protocols
- Other protocols
TLS Record Protocol

- The record protocol takes an application message to be transmitted,
 - fragments the data into manageable blocks,
 - optionally compresses the data,
 - computes a message authentication code (MAC),
 - encrypts and
 - adds a header.

TLS Handshake Protocol

Phase 1: Establish security capabilities
- Cipher suite: a list of cryptographic algorithms supported by the client
- Establish protocol version, session ID, cipher suite, compression method, exchange random values

Phase 2: Server authentication and key exchange
- Optionally send server certificate and request client certificate
- Certificate: authenticate the server
- Certificate Request: request client certificate
- Change Cipher Spec: exchange random values
- Finished: send client certificate response if requested

Phase 3: Client authentication and key exchange
- Change Cipher Spec: exchange random values
- Finished: send client certificate response if requested

Phase 4: Finish
- Change Cipher Spec: exchange random values
- Finished: send client certificate response if requested
- Message authentication code: verifies the integrity of messages

Authentication

- Use of cryptography to have two principals verify each others’ identities.
- **Direct authentication**: the server uses a shared secret key to authenticate the client.
- **Indirect authentication**: a trusted authentication server (third party) authenticates the client.
- The authentication server knows keys of principals and generates temporary shared key (ticket) to an authenticated client. The ticket is used for messages in this session.
 - E.g., Verisign servers

Direct Authentication

- Authentication with a secret key
 - “Nonce” random num.
 - Bob calculates K_{A,R_B} and matches with reply.
 - Alice is the only one who could have replied correctly.

“Optimized” Direct Authentication

- Authentication with a secret key with three messages
 - Anything wrong with this?
Needham-Schroeder Authentication

- An authentication server provides secret keys.
 - Every client shares a secret key with the server to encrypt their channels.
- If a client A wants to communicate with another client B,
 - The server sends a key to the client A in two forms.
 - First, in a plain form, so that the client A can use it to encrypt its channel to the client B.
 - Second, in an encrypted form (with the client B’s secret key), so that the client B can know that the key is valid.
- The client A sends this encrypted key to the client B as well.

Needleman-Wunsch Similarity Score Matrix

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Kerberos

- Follows Needham-Schroeder closely
- Time values used for nonces
 - To prevent replay attacks
 - To enforce a lifetime for each ticket
- Very popular
 - An Internet standard
 - Default in MS Windows
Summary

• Digital certificates
 – Binds a public key to its owner
 – Establishes a chain of trust
• TLS
 – Provides an application-transparent way of secure communication
 – Uses digital certificates to verify the origin identity
• Authentication
 – Needham-Schroeder & Kerberos

Acknowledgements

• These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Jennifer Rexford (Princeton) and Michael Freedman (Princeton).