

CSE 486/586, Spring 2014

- Each transaction gets a physical (not logical) timestamp.
- Transactions are ordered based on their timestamps.
 Spanner's Paxos group decides in what order transactions should be committed according to the timestamps.
- Transaction ordering guarantee
- If T1 commits at *time1* and T2 starts at *time2* where *time1* < time2, then T1's timestamp should be less than T2's.
- What is critical in this scenario?
- Physical time synchronization!

CSE 486/586, Spring 2014

Time Synchronization: TrueTime

- Each data center has
 - GPS and atomic clocks
 - These two provide very fine-grained clock synchronization down to a few milliseconds.
- Every 30 seconds, there's maximum 7 ms difference.
- Multiple synchronization daemons per data center – GPS and atomic clocks can fail in various conditions.
 - Sync daemons talk to each other within a data center as well as across data centers.
- TrueTime API exposes uncertainty.
 - TT.now(): returns an interval [earliest, latest]
 - TT.after(t): true if t has definitely passed
 - TT.before(t): true if t has definitely not arrived

CSE 486/586, Spring 2014

- This is simplified.
- Principle: using TrueTime, always pick a clock value that is not uncertain.
- Commit timestamp is assigned after a commit request is received at the coordinator leader.
 - For transaction T(i), pick S(i) > TT.now().latest: this ensures that actual TT.now() has definitely passed.
- The coordinator leader starts two-phase commit.
 This takes time and at some point of time all commits will be done.
 - The coordinator leader makes sure that no read can read the outcome of the commit until TT.after(S(i)) is true.
 - This makes sure that the commit time has definitely passed.

CSE 486/586, Spring 2014

	latency (ms)		
operation	mean	std dev	count
all reads	8.7	376.4	21.5B
single-site commit	72.3	112.8	31.2M
multi-site commit	103.0	52.2	32.1M

CSE 486/586, Spring 2014

19

Acknowledgements

 These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Jennifer Rexford (Princeton) and Michael Freedman (Princeton).

CSE 486/586, Spring 2014

19