CSE 486/586 Administrivia

- PA4 due this Friday @ 1:59pm
- Final: 5/14, Wednesday, 3:30pm – 6:30pm
 - Norton 112
 - Everything
 - No restroom use (this quickly becomes chaotic)
 - Bring an erasure, if you’d like.
- Important things about the final week
 - PA4 scores will be released by Wednesday.
 - Thursday and Friday office hours are for PA4.
 - No TA office hours from Monday to Wednesday
 - I will still hold my office hours on Monday.
 - Scoring will hopefully be done by the end of the week.

Building a Distributed System

- “The number of people who know how to build really solid distributed systems…is about ten”
 – Scott Shenker, Professor at UC Berkeley
- Are you confident now?
- What were the most interesting topic to you?

Things We Discussed (Midterm)

- Networking basics (feat. the Internet)
- Failure detection
- Time synchronization
- Logical time & global states
- P2P & DHT
- Reliable multicast
- Consensus basics
- Mutual exclusion & leader election
- RPC

The Way I See It

- We’ve learned some of the building blocks & fundamental results…
 - Networking basics, failure detection, logical time, reliable multicast, mutual exclusion, leader election, transactions, concurrency control, replication, gossiping, Paxos, BFT, …
- …and how real systems get built using those…
 - P2P, DHT, Dynamo, Spanner, …
- …and also got some experience in building/using the fundamental building blocks…
 - Ordered multicast for messaging, a DHT, and a replicated key-value storage
Distributed Systems 10 Questions

• Course goal: answering 10 questions on distributed systems
 – At the end of the semester, if you can answer only 10 questions about distributed systems, you’ll probably get an A.
 – Easy enough!
• What are those questions?
 – Organized in 6 themes
 – 1-2 questions in each theme
 – A few (or several) lectures to answer each question

Theme 1: Communications

• Q1: how do you talk to another machine?
 – A: Networking basics
 – Know how to use socket now?
• Q2: how do you talk to multiple machines at once?
 – A: Multicast
 – What is "reliable multicast"?
 – What orderings are there for ordered multicast?
• Q3: can you call a function/method/procedure running in another machine?
 – A: RPC
 – What is a stub compiler (generator)?

Theme 2: Concurrency

• Q4: how do you control access to shared resources?
 – A: Distributed mutual exclusion, leader election, etc.
 – Ring election? Modified ring election? Bully algorithm?
Theme 3: Consensus

• Q5: how do multiple machines reach an agreement?
 – A: It's impossible! (the FLT result), but algorithms do exist that get around the impossibility (Paxos, BFT, etc.)
 – What are the phases for Paxos?

Theme 4: Storage Management

• Q6: how do you locate where things are and access them?
 – A: DHT, distributed file systems, etc.
 – Consistent hashing?

Theme 5: Non-Byzantine Failures

• Q7: how do you know if a machine has failed?
 – A: Failure detection
 – What is the fundamental limit of a failure detector?
• Q8: how do you program your system to operate continually even under failures?
 – A: Replication, gossiping
 – Linearizability? Sequential consistency? One-copy serialization?
Theme 6: Byzantine Failures

• Q9: how do you deal with attackers?
 – A: Security
 – What is onion routing?
• Q10: what if some machines malfunction?
 – A: Byzantine fault tolerance
 – To tolerate f faulty nodes, how many nodes do we need in total?

Acknowledgements

• These slides contain material developed and copyrighted by Indranil Gupta (UIUC).