CSE 486/586 Distributed Systems The Internet in 2 Hours: The Second Hour

Steve Ko Computer Sciences and Engineering University at Buffalo

CSE 486/586

Recap

- · The Internet
 - A network of networks
 - A case study as a distributed system
- Protocol
 - An agreement between multiple parties
 - Syntax & semantics
- · Design a system
 - Why, what, and how
- · The Internet
 - Connecting by layering

CSE 486/586

Layering: A Modular Approach

- · Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
- · Interface between layers defines interaction
 - Hides implementation details
 - Layers can change without disturbing other layers
- "The" computer science approach
 - ISA, OS, networking...

Application

Application-to-application channels

Host-to-host connectivity

Link hardware

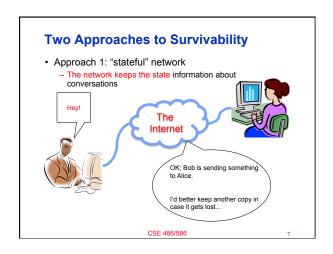
CSE 486/586

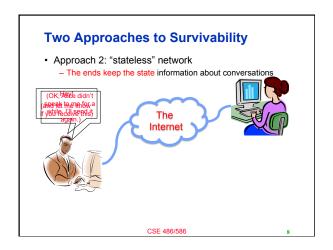
Challenges in Layering

- What to put on top of physical networks?
- · Assumption (for the sake of the discussion):
 - Packet switching (a conversation is divided into smaller units called packets).
- Basic things for enabling a conversation between remote hosts:
 - Addressing (where do I send a msg?)
 - Routing (how do I reach that address?)
- Most importantly, survivability
 - Protection of a conversation as long as there's a physical path between entities communicating and they are alive.
- What are some of the threats that disrupt a conversation?
 - Packet loss, out-of-order delivery, duplicate packets, etc.

486/586

We Must Ask Ourselves...

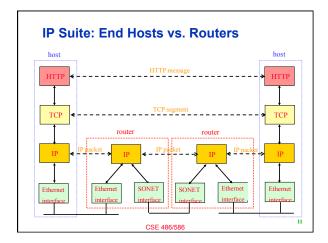

- · In a conversation, there are two components involved
 - Hosts
 - Network
- So, one more question: where do we want to put the functionalities? More specifically, what would be a good network/host division of labor?
- · Addressing and routing?
 - Yeah, probably in the network
- · What about conversation protection mechanisms?
 - The network or hosts?


CSE 486/586

So, How to Protect a Conversation? Think about the following scenario The Internet CSE 486/586 6

1

C



Two Approaches to Survivability

- Stateless networks' principle: fate-sharing
 - The conversation shares the same fate with the "ends."
 - "it is acceptable to lose the state information associated with an entity if, at the same time, the entity itself is lost."
- Advantages
 - Fate-sharing protects against any number of intermediate network failures (what about replication?)
 - Fate-sharing is much easier to engineer.
- The result: a "best-effort" network
 - The IP (Internet Protocol) layer doesn't really provide anything other than "best-effort" delivery (i.e., addressing and routing).
 - The end hosts provide conversation protection mechanisms.

CSE 486/586

The Internet Protocol Suite The Internet Protocol Suite Applications UDP TCP Waist The Hourglass Model The waist facilitates interoperability CSE 486/586

End-to-End Arguments

- Helps resisting the tendency to put and hide complicated things in the lower layers
- If a functionality must be implemented end-to-end, then don't implement it in the network.
 - Exception: when there are clear performance improvements
- Laid out in "End-to-End Arguments in System Design" by J.H. Saltzer, D.P. Reed and D.D. Clark (optional reading)
- A good rule of thumb in any system design, but still not something to follow blindly

CSE 486/586

C 2

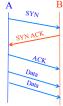
CSE 486/586 Administrivia

- Please try it out right away and see how far you can get.
- Please use Piazza; all announcements will go there.
- · Please come to my office during the office hours!
 - Give feedback about the class, ask questions, etc.

CSE 486/586

TCP/IP • IP "best-effort" network The network knows the source and the destination. - A conversation is divided into packets. - Makes the best effort to deliver packets - Packet loss, corruption, out-of-order delivery, etc. could all TCP (Transmission Control Protocol) - Handles the problems - Implemented at the end hosts destination IP network

CSE 486/586

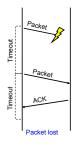

OK; Let's Think about It Together...

- Is this always a good thing?
- Is today's Internet still stateless?

TCP

- An end-to-end protocol
- · Protects conversations
 - Receiver is supposed to send an ack (acknowledgement) packet.
 - Packet loss → retransmission
 - Out-of-order delivery, duplicate packets \rightarrow sequence numbers
 - Packet corruption → checksum
- · Controls congestion
 - The network might be over-utilized
 - Prevents the network from collapsing (which was actually a concern in the late 80's)
- TCP is an abstraction: a reliable, byte-stream connection

A (Very) Brief Overview of TCP



- · Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgment (SYN ACK)
 - Host A sends an ACK to acknowledge the SYN ACK
- Why 3-way instead of 2-way?
 - Reachability

CSE 486/586

Retransmission

• Timeout & retransmission to handle packet loss

CSE 486/586

The Dark Side of TCP

- · There's overhead associated.
 - Connection establishment: 3-way handshake
 - Packet loss: retransmission timeout
 - Congestion control: doesn't utilize full bandwidth
- More importantly, some applications do not need these.
- · Examples?
- So, enter UDP (User Datagram Protocol): exposes almost exactly what IP can give you.

CSE 486/586

10

21

Why Would Anyone Use UDP?

- · Fine control over what data is sent and when
 - As soon as an application process writes
 - ... UDP will package the data and send the packet
- · No delay for connection establishment
 - UDP just blasts away without any formal preliminaries
 - ... which avoids introducing any unnecessary delays
- · No connection state
 - No allocation of buffers, parameters, sequence #s, etc.
 - ... making it easier to handle many active clients at once
- Small packet header overhead
 - UDP header is only eight-bytes long

CSE 486/586

20

Popular Applications That Use UDP

- · Multimedia streaming
 - Retransmitting lost/corrupted packets is not worthwhile
 - By the time the packet is retransmitted, it's too late
 - E.g., telephone calls, video conferencing, gaming
- Simple query protocols like Domain Name System
 - Overhead of connection establishment is overkill
 - Easier to have the application retransmit if needed
 - Will cover this in a separate lecture

CSE 486/586

What Applications See Socket API TCP UDP Device Drivers Network Interface

Summary

- What to put on top of physical networks?
 - Layers providing survivability
- · Where to put functionalities?
 - Fate-sharing & end-to-end arguments
 - IP layer doesn't provide much
 - TCP handles most of the survivability issues
- TCP & UDP: the two transport protocols of the Internet
- · What interface do applications see?
 - Socket API
- Next: An introduction to Android programming

CSE 486/586

23

Acknowledgements

- These slides contain material developed and copyrighted by
 - Indranil Gupta at UIUC
 - Mike Freedman and Jen Rexford at Princeton

CSE 486/586

586