
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Logical Time

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
•  Clock skews do happen
•  Cristian’s algorithm

– One server
–  Server-side timestamp and one-way delay estimation

•  NTP (Network Time Protocol)
– Hierarchy of time servers
–  Estimates the actual offset between two clocks
– Designed for the Internet

•  Logical time
–  For ordering events, relative time should suffice.
– Will continue today

2

CSE 486/586

Basics: State Machine
•  State: a collection of values of variables
•  Event: an occurrence of an action that changes the

state, (i.e., instruction, send, and receive)
•  As a program,

– We can think of all possible execution paths.

•  At runtime,
–  There’s only one path that the program takes.

•  Equally applicable to
–  A single process
–  A distributed set of processes

3

S0

S1 S2

S4 S3

SF

CSE 486/586

Ordering Basics
•  Why did we want to synchronize physical clocks?
•  What we need: Ordering of events.
•  Arises in many different contexts…

4

CSE 486/586

Abstract View

•  Above is what we will deal with most of the time.
•  Ordering question: what do we ultimately want?

–  Taking two events and determine which one happened
before the other one.

5

p1

p2

p3

a b

c d

e f

m1

m2

Physi cal
time

Physical
time

CSE 486/586

What Ordering?

•  Ideal?
–  Perfect physical clock synchronization

•  Reliably?
–  Events in the same process
–  Send/receive events

6

p1

p2

p3

a b

c d

e f

m1

m2

Physi cal
time

Physical
time

C 2

CSE 486/586

Lamport Timestamps

7

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
ti me

Physical
time

CSE 486/586

Logical Clocks
•  Lamport algorithm assigns logical timestamps:

•  All processes use a counter (clock) with initial value of zero
•  A process increments its counter when a send or an

instruction happens at it. The counter is assigned to the
event as its timestamp.

•  A send (message) event carries its timestamp

•  For a receive (message) event the counter is updated by
max(local clock, message timestamp) + 1

•  Define a logical relation happened-before (→)
among events:
•  On the same process: a → b, if time(a) < time(b)
•  If p1 sends m to p2: send(m) → receive(m)
•  (Transitivity) If a → b and b → c then a → c

•  Shows causality of events
8

CSE 486/586

CSE 486/586 Administrivia
•  PA2 is out.
•  Please pay attention to your coding style.

9 CSE 486/586

Find the Mistake: Lamport Logical
Time

10

p 1

p 2

p 3

p 4

1

2

2

3

3

54

5

3

6

4

6 8

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Message timestamp

Physical Time

4

CSE 486/586

Corrected Example: Lamport Logical
Time

11

p 1

p 2

p 3

p 4

1

2

2

3

3

54

5

7

6

8

9 10

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Message timestamp

Physical Time

8

CSE 486/586

One Issue

12

p 1

p 2

p 3

p 4

1

2

2

3

3

54

5

7

6

8

9 10

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Message timestamp

Physical Time

8

3 and 7 are
logically concurrent
events

C 3

CSE 486/586

Vector Timestamps
•  With Lamport clock

•  e “happened-before” f ⇒ timestamp(e) < timestamp (f), but
•  timestamp(e) < timestamp (f) ⇒ e “happened-before” f

•  Idea?

13

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
ti me

X

Physical
time

CSE 486/586

Vector Logical Clocks
•  Vector Logical time addresses the issue:

•  All processes use a vector of counters (logical clocks), ith
element is the clock value for process i, initially all zero.

•  Each process i increments the ith element of its vector upon an
instruction or send event. Vector value is timestamp of the
event.

•  A send(message) event carries its vector timestamp (counter
vector)

•  For a receive(message) event, Vreceiver[j] =
•  Max(Vreceiver[j] , Vmessage[j]), if j is not self,

•  Vreceiver[j] + 1, otherwise

•  Key point
•  You updates your own clock. For all other clocks, rely on what

other processes tell you and get the most up-to-date values.

14

CSE 486/586

Find a Mistake: Vector Logical Time

15

p 1

p 2

p 3

p 4

0,0,0,0

Vector logical clock

Message (vector timestamp)

Physical Time

0,0,0,0

0,0,0,0

0,0,0,0

(1,0,0,0)

1,0,0,0

1,1,0,0

2,0,0,0

2,0,1,0

(2,0,0,0)

2,0,2,0

2,0,2,1

(2,0,2,0)

1,2,0,0

2,2,3,0

(1,2,0,0)

4,0,2,2

4,2,4,2

(4,0,2,2)

2,0,2,2

3,0,2,2

(2,0,2,2)

2,0,2,3

4,2,5,3

(2,0,2,3)

n,m,p,q

CSE 486/586

Comparing Vector Timestamps
•  VT1 = VT2,

•  iff VT1[i] = VT2[i], for all i = 1, … , n

•  VT1 <= VT2,
•  iff VT1[i] <= VT2[i], for all i = 1, … , n

•  VT1 < VT2,
•  iff VT1 <= VT2 & ∃ j (1 <= j <= n & VT1[j] < VT2 [j])

•  VT1 is concurrent with VT2
•  iff (not VT1 <= VT2 AND not VT2 <= VT1)

16

CSE 486/586

The Use of Logical Clocks
•  Is a design decision
•  NTP error bound

–  Local: a few ms
– Wide-area: 10’s of ms

•  If your system doesn’t care about this inaccuracy,
then NTP should be fine.

•  Logical clocks impose an arbitrary order over
concurrent events anyway

–  Breaking ties: process IDs, etc.

17 CSE 486/586

Summary
•  Relative order of events enough for practical

purposes
–  Lamport’s logical clocks
–  Vector clocks

•  Next: How to take a global snapshot

18

C 4

CSE 486/586 19

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

