
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Global States

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
•  Ordering of events

– Many applications need it, e.g., collaborative editing,
distributed storage, etc.

•  Logical time
–  Lamport clock: single counter
–  Vector clock: one counter per process
– Happens-before relation shows causality of events

2

CSE 486/586

Today’s Question
•  Example question: who has the most friends on

Facebook?
•  Challenges to answering this question?

–  It changes!

•  What do we need?
–  A snapshot of the social network graph at a particular time

3 CSE 486/586

Today’s Question
•  Distributed debugging

•  How do you debug this?
–  Log in to one machine and see what happens
– Collect logs and see what happens
–  Taking a global snapshot!

4

P0 P1 P2

Deadlock!

Both waiting…

CSE 486/586

What Do We Want?

•  Would you say this is a good snapshot?
– No because e2

1 might have been caused by e3
1.

•  Three things we want.
–  Per-process state
– Messages in flight
–  All events that happened before each event in the snapshot

5

P1

P2

P3

e1
0 e1

1
e1

2 e1
3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

A “cut”

CSE 486/586

Obvious First Try
•  Synchronize clocks of all processes

–  Ask all processes to record their states at known time t
•  Problems?

–  Time synchronization possible only approximately
–  Another issue?

– Does not record the state of messages in the channels

•  Again: synchronization not required – causality is
enough!

•  What we need: logical global snapshot
–  The state of each process
– Messages in transit in all communication channels

6

P0 P1 P2

msg

C 2

CSE 486/586

How to Do It? Definitions

•  For a process Pi , where events ei
0, ei

1, … occur,
•  history(Pi) = hi = <ei

0, ei
1, … >

•  prefix history(Pi
k) = hi

k = <ei
0, ei

1, …,ei
k >

•  Si
k : Pi ’s state immediately after kth event

•  For a set of processes P1 , …,Pi , …. :
•  Global history: H = ∪i (hi)
•  Global state: S = ∪i (Si

ki)
•  A cut C ⊆ H = h1

c1 ∪ h2
c2 ∪ … ∪ hn

cn

•  The frontier of C = {ei
ci, i = 1,2, … n}

7

P1

P2

P3

e1
0 e1

1
e1

2 e1
3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

CSE 486/586

Consistent States
•  A cut C is consistent if and only if

•  ∀e ∈ C (if f → e then f ∈ C)

•  A global state S is consistent if and only if
•  it corresponds to a consistent cut

8

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

Inconsistent cut Consistent cut

CSE 486/586

Why Consistent States?
•  #1: For each event, you can trace back the causality.
•  #2: Back to the state machine (from the last lecture)

–  The execution of a distributed system as a series of
transitions between global states: S0 à S1 à S2 à …

– …where each transition happens with one single action from
a process (i.e., local process event, send, and receive)

–  Each state (S0, S1, S2, …) is a consistent state.

9 CSE 486/586

CSE 486/586 Administrivia
•  PA2-A deadline: This Friday
•  Please come and ask questions during office hours.

10

CSE 486/586

The “Snapshot” Algorithm: Assumptions
•  There is a communication channel between each pair

of processes (@each process: N-1 in and N-1 out)
•  Communication channels are unidirectional and

FIFO-ordered
•  No failure, all messages arrive intact, exactly once
•  Any process may initiate the snapshot
•  Snapshot does not interfere with normal execution
•  Each process is able to record its state and the state

of its incoming channels (no central collection)

11 CSE 486/586

Single Process vs. Multiple Processes
•  Single process snapshot

•  Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

•  Multi-process snapshot
•  Snapshots of all process states
•  Network snapshot: All messages in the network

•  What messages matter (for consistent cuts)?

12

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

C 3

CSE 486/586

Single Process vs. Multiple Processes
•  For each local snapshot, we want to record all

messages in the network that are a result of a send
event reflected in the snapshot.

•  How?
•  Each sender can record it, but probably with extra overhead.
•  Alternatively, each receiver can record it---we need to know

when to start and when to stop.
•  As soon as a process takes a local snapshot, it starts

recording incoming messages.
•  For each process pair, a process stops recording when

another process takes a snapshot.

13 CSE 486/586

The “Snapshot” Algorithm
•  Goal: records a set of process and channel states such that the

combination is a consistent global state.
•  Two questions:

–  #1: When to take a local snapshot at each process so that the
collection of them can form a consistent global state? (Process
snapshot)

–  #2: How to capture messages in flight sent before each local
snapshot? (Network snapshot)

•  Brief answer for #1
–  The initiator broadcasts a “marker” message to everyone else

(“hey, take a local snapshot now”)
•  Brief answer for #2

–  If a process receives a marker for the first time, it takes a local
snapshot, starts recording all incoming messages, and broadcasts
a marker again to everyone else. (“hey, I’ve sent all my messages
before my local snapshot to you, so stop recording my messages.”)

–  A process stops recording, when it receives a marker for each
channel.

14

CSE 486/586

The “Snapshot” Algorithm
•  Basic idea: marker broadcast & recording

–  The initiator broadcasts a “marker” message to everyone
else (“hey, take a local snapshot now”)

–  If a process receives a marker for the first time, it takes a
local snapshot, starts recording all incoming messages, and
broadcasts a marker again to everyone else. (“hey, I’ve sent
all my messages before my local snapshot to you, so stop
recording my messages.”)

–  A process stops recording for each channel, when it
receives a marker for that channel.

15

P1

P2

P3

a

b

M M
M

M

M

M

CSE 486/586

The “Snapshot” Algorithm
1. Marker sending rule for initiator process P0

•  After P0 has recorded its own state
•  for each outgoing channel C, send a marker message

on C
2. Marker receiving rule for a process Pk

 on receipt of a marker over channel C
•  if Pk has not yet recorded its own state

•  record Pk’s own state
•  record the state of C as “empty”
•  for each outgoing channel C, send a marker on C
•  turn on recording of messages over other incoming channels

•  else
•  record the state of C as all the messages received over C

since Pk saved its own state; stop recording state of C

16

CSE 486/586

Chandy and Lamport’s Snapshot

17

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
 pi records the state of c as the set of messages it has received over c
since it saved its state.

end if
Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:
 pi sends one marker message over c
(before it sends any other message over c).

CSE 486/586

Exercise

18

P1

P2

P3

e1
0

e2
0

e2
3

e3
0

e1
3

a

b

M

e1
1,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e2
1,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e1
4

3- P1 receives Marker over C21, sets state(C21) = {a}

e3
2,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e2
4

5- P2 receives Marker over C32, sets state(C32) = {b}

e3
1

6- P3 receives Marker over C23, sets state(C23) = {}

e1
3

7- P1 receives Marker over C31, sets state(C31) = {}

C 4

CSE 486/586

One Provable Property
•  The snapshot algorithm gives a consistent cut
•  Meaning,

–  Suppose ei is an event in Pi, and ej is an event in Pj

–  If ei à ej, and ej is in the cut, then ei is also in the cut.

•  Proof sketch: proof by contradiction
–  Suppose ej is in the cut, but ei is not.
–  Since ei à ej, there must be a sequence M of messages

that leads to the relation.
–  Since ei is not in the cut (our assumption), a marker

should’ve been sent before ei, and also before all of M.
–  Then Pj must’ve recorded a state before ej, meaning, ej is

not in the cut. (Contradiction)

19 CSE 486/586

Another Provable Property
•  Can we evaluate a stable predicate?

–  Predicate: a function: (a global state) à {true, false}
–  Stable predicate: once it’s true, it stays true the rest of the

execution, e.g., a deadlock.
•  A stable predicate that is true in S-snap must also be

true in S-final
–  S-snap: the recorded global state
–  S-final: the global state immediately after the final state-

recording action.
•  Proof sketch

–  The necessity for a proof: S-snap is a snapshot that may or
may not correspond to a snapshot from the real execution.

–  Strategy: prove that it’s part of what could have happened.
–  Take the actual execution as a linearization
–  Re-order the events to get another linearization that passes

through S-snap.

20

CSE 486/586

Related Properties
•  Liveness (of a predicate): guarantee that something

good will happen eventually
–  For any linearization starting from the initial state, there is a

reachable state where the predicate becomes true.
–  “Guarantee of termination” is a liveness property

•  Safety (of a predicate): guarantee that something bad
will never happen

–  For any state reachable from the initial state, the predicate is
false.

– Deadlock avoidance algorithms provide safety

•  Liveness and safety are used in many other CS
contexts.

21 CSE 486/586

Summary
•  Global states

–  A union of all process states
– Consistent global state vs. inconsistent global state

•  The “snapshot” algorithm
•  Take a snapshot of the local state
•  Broadcast a “marker” msg to tell other processes to record
•  Start recording all msgs coming in for each channel until

receiving a “marker”
•  Outcome: a consistent global state

22

CSE 486/586 23

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

