CSE 486/586 Distributed Systems Reliable Multicast --- 1

Steve Ko Computer Sciences and Engineering University at Buffalo

CSE 486/586

Today's Question

- How do a group of processes communicate?
- Unicast (best effort or reliable)
 - One-to-one: Message from process *p* to process *q*.
 - Best effort: message may be delivered, but will be intact
 - Reliable: message will be delivered
- Broadcast
 - One-to-all: Message from process *p* to *all* processes
 Impractical for large networks
- Multicast
 - One-to-many: "Local" broadcast within a group g of processes
- What are the issues?
 - Processes crash (we assume crash-stop)
 - Messages get delayed
 - CSE 486/586

CSE 486/586

What: Properties to Consider

- Liveness: guarantee that something good will happen eventually
 - For the initial state, there is a reachable state where the predicate becomes true.
 - "Guarantee of termination" is a liveness property
- Safety: guarantee that something bad will never
- happen
- For any state reachable from the initial state, the predicate is false.
- Deadlock avoidance algorithms provide safety
- Liveness and safety are used in many other CS contexts.

CSE 486/586

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

What: Reliable Multicast Goals

- Integrity: A correct (i.e., non-faulty) process *p* delivers a message *m* at most once.
 - "Non-faulty": doesn't deviate from the protocol & alive
- Agreement: If a correct process delivers message *m*, then all the other correct processes in group(*m*) will eventually deliver *m*.
 - Property of "all or nothing."
- Validity: If a correct process multicasts (sends) message *m*, then it will eventually deliver *m* itself.
 Guarantees liveness to the sender.
- Validity and agreement together ensure overall liveness: if some correct process multicasts a message m, then, all correct processes deliver m too.

CSE 486/586

Acknowledgements • hese slides contain material developed and copyrighted by Indranil Gupta (UIUC).