
C 1 

CSE 486/586 

CSE 486/586 Distributed Systems 
Reliable Multicast --- 2 

Steve Ko 
Computer Sciences and Engineering 

University at Buffalo 
 
 
 

CSE 486/586 

Last Time 
•  How do a group of processes communicate? 
•  Multicast 

– One-to-many: “Local” broadcast within a group g of 
processes 

•  What are the issues? 
–  Processes crash (we assume crash-stop) 
– Messages get delayed 

•  B-multicast 
•  R-Multicast 

–  Properties: integrity, agreement, validity 
•  Ordering 

– Why do we care about ordering? 

2 

CSE 486/586 

Recap: Ordering 

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

• Totally ordered messages 
T1 and T2. 

• FIFO-related messages F1 
and F2. 

• Causally related messages 
C1 and C3 
 

• Total ordering does not 
imply causal ordering. 

•  Causal ordering implies 
FIFO ordering 

•  Causal ordering does not 
imply total ordering. 

•  Hybrid mode: causal-total 
ordering, FIFO-total 
ordering. 

3 CSE 486/586 

Example: FIFO Multicast  

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

1 1 2 2 1

1

Reject:  
1 < 1 + 1 

Accept  
1 = 0 + 1 

Accept:  
2 = 1 + 1 

2 0 0

Buffer 
2>0 +1 

Accept:  
1 = 0 + 1 

2 0 0

Accept 
Buffer  
2 =1 + 1 

Accept  
1 = 0 + 1 

Sequence Vector0 0 0

(do NOT be confused with vector timestamps)
“Accept” = Deliver

4 

1 

CSE 486/586 

Totally Ordered Multicast 
•  Using a sequencer 

– One dedicated “sequencer” that orders all messages 
–  Everyone else follows. 

•  ISIS system 
–  Similar to having a sequencer, but the responsibility is 

distributed to each sender. 

5 CSE 486/586 

Total Ordering Using a Sequencer 
Sequencer = Leader process

6 

i: unique message id



C 2 

CSE 486/586 

ISIS algorithm for total ordering 

2
1

1

2

2

1 Message

2 Proposed Seq

P2

P3

P1

P4

3 Agreed Seq

3

3

7 CSE 486/586 

ISIS algorithm for total ordering 
•  Sender multicasts message to everyone 
•  Reply with proposed priority (sequence no.) 

–  Larger than all observed agreed priorities 
–  Larger than any previously proposed (by self) priority 

•  Store message in priority queue 
–  Ordered by priority (proposed or agreed) 
–  Mark message as undeliverable 

•  Sender chooses agreed priority, re-multicasts message 
with agreed priority 

–   Maximum of all proposed priorities 
•  Upon receiving agreed (final) priority 

–  Mark message as deliverable 
–  Deliver any deliverable messages at the front of priority queue 

•  Notice any (small) issue? 

8 

CSE 486/586 

CSE 486/586 Administrivia 
•  PA2-B will be released today. 

9 CSE 486/586 

Problematic Scenario 
•  Two processes P1 & P2 at their initial state. 
•  P1 sends M1 & P2 sends M2. 
•  P1 receives M1 (its own) and proposes 1. P2 does 

the same for M2. 
•  P2 receives M1 (P1’s message) and proposes 2. P1 

does the same for M2. 
•  P1 picks 2 for M1 & P2 also picks 2 for M2. 
•  Same sequence number for two different msgs. 
•  How do you want to solve this? 

10 

CSE 486/586 

Example: ISIS algorithm 

11 

A 

B 

C 

A:1 

B:1 

B:1 A:2 

A:2 C:3 

C:2 

C:3 

B:3 P1 

P2 

P3 

A:2 ✔ 

B:3 ✔ B:
3.1 

C:
3.3 

C:
3.3 

C:
3.3 
✔ ✔ 

B:
3.1 
✔ ✔ ✔ 

B:
3.1 
✔ ✔ 

Showing the process id only when necessary 

CSE 486/586 

Proof of Total Order  
•  For a message m1, consider the first process p that 

delivers m1 
•  At p, when message m1 is at head of priority queue and 

has been marked deliverable, let m2 be another message 
that has not yet been delivered (i.e., is on the same queue 
or has not been seen yet by p) 

 finalpriority(m2) >=     
  proposedpriority(m2) >    
   finalpriority(m1) 

•  Suppose there is some other process p’ that delivers m2 before it delivers m1. Then at p’, 
  finalpriority(m1) >=  
  proposedpriority(m1) > 
   finalpriority(m2) 

•  a contradiction! 

Due to “max” operation at sender

Since queue ordered by increasing priority

Due to “max” operation at sender

Since queue ordered by increasing priority

12 



C 3 

CSE 486/586 

Causally Ordered Multicast 
•  Each process keeps a vector clock. 

–  Each counter represents the number of messages received 
from each of the other processes. 

•  When multicasting a message, the sender process 
increments its own counter and attaches its vector 
clock. 

•  Upon receiving a multicast message, the receiver 
process waits until it can preserve causal ordering: 

–  It has delivered all the messages from the sender. 
–  It has delivered all the messages that the sender had 

delivered before the multicast message. 

13 CSE 486/586 

Causal Ordering 

The number of group-g messages
from process j that have been seen at

process i so far

14 

CSE 486/586 

Example: Causal Ordering Multicast  

P1

P2

P3

Physical Time

(1,1,0)

Reject: 

Accept 

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer,  
missing 

P1(1)  

1,1,0

1,1,0

1,1,0

Accept: 

1,0,0

Accept 
Buffered 
message 

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept 

15 CSE 486/586 

Summary 
•  Two multicast algorithms for total ordering 

–  Sequencer 
–  ISIS 

•  Multicast for causal ordering 
– Uses vector timestamps 

16 

CSE 486/586 17 

Acknowledgements 
•  These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC). 


