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Last Time 
•  Two multicast algorithms for total ordering 

–  Sequencer 
–  ISIS 

•  Multicast for causal ordering 
– Uses vector timestamps 
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Today’s Question 
•  How do we organize the nodes in a distributed 

system? 
•  Up to the 90’s 

–  Prevalent architecture: client-server (or master-slave) 
– Unequal responsibilities 

•  Now 
–  Emerged architecture: peer-to-peer 
–  Equal responsibilities 

•  Studying an example of client-server: DNS (last time) 
•  Today: studying peer-to-peer as a paradigm (not just 

as a file-sharing application, but will still use file-
sharing as the main example) 

–  Learn the techniques and principles 
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Motivation: Distributing a Large File 
•  A client-server architecture can do it… 
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Motivation: Distributing a Large File 
•  …but sometimes not good enough. 

–  Limited bandwidth 
– One server can only serve so many clients. 

•  Increase the upload rate from the server-side? 
– Higher link bandwidth at the one server 
– Multiple servers, each with their own link 
– Requires deploying more infrastructure 

•  Alternative: have the receivers help 
– Receivers get a copy of the data 
–  And then redistribute the data to other receivers 
–  To reduce the burden on the server 
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Motivation: Distributing a Large File 
•  Peer-to-peer to help 
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Challenges of Peer-to-Peer 
•  Peers come and go 

–  Peers are intermittently connected 
– May come and go at any time 
– Or come back with a different IP address 

•  How to locate the relevant peers? 
–  Peers that are online right now 
–  Peers that have the content you want 

•  How to motivate peers to stay in system? 
– Why not leave as soon as download ends? 
– Why bother uploading content to anyone else? 

•  How to download efficiently? 
–  The faster, the better 
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Locating Relevant Peers 
•  Evolution of peer-to-peer 

– Central directory (Napster) 
– Query flooding (Gnutella) 
– Hierarchical overlay (Kazaa, modern Gnutella) 

•  Design goals 
–  Scalability 
–  Simplicity 
– Robustness 
–  Plausible deniability 
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The First: Napster 
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The First: Napster 
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•  Server’s directory continually updated 
–  Always know what file is currently available 
–  Point of vulnerability for legal action 

•  Peer-to-peer file transfer 
– No load on the server 
–  Plausible deniability for legal action (but not enough) 

•  Proprietary protocol 
–  Login, search, upload, download, and status operations 
– No security: cleartext passwords and other vulnerability 

•  Bandwidth issues 
–  Suppliers ranked by apparent bandwidth & response time 

•  Limitations: 
– Decentralized file transfer, but centralized lookup 
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The Second: Gnutella 
•  Complete decentralization 
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The Second: Gnutella 
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The Second: Gnutella 
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The Second: Gnutella 
•  Advantages 

–  Fully decentralized 
–  Search cost distributed 
–  Processing per node permits powerful search semantics 

•  Disadvantages 
–  Search scope may be quite large 
–  Search time may be quite long 
– High overhead, and nodes come and go often 

15 CSE 486/586 

The Third: KaAzA 
•  Middle ground between 

Napster & Gnutella 
•  Each peer is either a 

group leader (super 
peer) or assigned to a 
group leader 

–  TCP connection between 
peer and its group leader 

–  TCP connections between 
some pairs of group 
leaders 

•  Group leader tracks the 
content in all its children 
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The Third: KaZaA 
•  A supernode stores a directory listing 

(<filename,peer pointer>), similar to Napster servers 
•  Supernode membership changes over time 
•  Any peer can become (and stay) a supernode, 

provided it has earned enough reputation 
–  Kazaalite: participation level (=reputation) of a user between 

0 and 1000, initially 10, then affected by length of periods of 
connectivity and total number of uploads 

– More sophisticated reputation schemes invented, especially 
based on economics 

•  A peer searches by contacting a nearby supernode 
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CSE 486/586 Administrivia 
•  Please start PA2-B. 
•  (In class) Midterm: 3/11 
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Now: BitTorrent 
•  Key motivation: popular content 

–  Popularity exhibits temporal locality (Flash Crowds) 
–  E.g., Slashdot/Digg effect, CNN Web site on 9/11, release of 

a new movie or game 

•  Focused on efficient fetching, not searching 
– Distribute same file to many peers 
–  Single publisher, many downloaders 

•  Preventing free-loading 
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Key Feature: Parallel Downloading 
•  Divide large file into many pieces 

– Replicate different pieces on different peers 
–  A peer with a complete piece can trade with other peers 
–  Peer can (hopefully) assemble the entire file 

•  Allows simultaneous downloading 
– Retrieving different parts of the file from different peers at 

the same time 
–  And uploading parts of the file to peers 
–  Important for very large files 

•  System Components 
– Web server 
–  Tracker 
–  Peers 
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Tracker 
•  Infrastructure node 

–  Keeps track of peers participating in the torrent 

•  Peers register with the tracker 
–  Peer registers when it arrives 
–  Peer periodically informs tracker it is still there 

•  Tracker selects peers for downloading 
– Returns a random set of peers 
–  Including their IP addresses 
–  So the new peer knows who to contact for data 

•  Can be “trackerless” using DHT 
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Chunks 
•  Large file divided into smaller pieces 

–  Fixed-sized chunks 
–  Typical chunk size of 256 Kbytes 

•  Allows simultaneous transfers 
– Downloading chunks from different neighbors 
– Uploading chunks to other neighbors 

•  Learning what chunks your neighbors have 
–  Periodically asking them for a list 

•  File done when all chunks are downloaded 
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BitTorrent Protocol 
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BitTorrent Protocol 
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BitTorrent Protocol 
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BitTorrent Protocol 
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BitTorrent Protocol 
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BitTorrent Protocol 
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BitTorrent Protocol 
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Chunk Request Order 
•  Which chunks to request? 

– Could download in order 
–  Like an HTTP client does 

•  Problem: many peers have the early chunks 
–  Peers have little to share with each other 
–  Limiting the scalability of the system 

•  Problem: eventually nobody has rare chunks 
–  E.g., the chunks need the end of the file 
–  Limiting the ability to complete a download 

•  Solutions: random selection and rarest first 
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Rarest Chunk First 
•  Which chunks to request first? 

–  The chunk with the fewest available copies 
–  I.e., the rarest chunk first 

•  Benefits to the peer 
–  Avoid starvation when some peers depart 

•  Benefits to the system 
–  Avoid starvation across all peers wanting a file 
–  Balance load by equalizing # of copies of chunks 
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Preventing Free-Riding 
•  Vast majority of users are free-riders 

– Most share no files and answer no queries 
– Others limit # of connections or upload speed 

•  A few “peers” essentially act as servers 
–  A few individuals contributing to the public good 
– Making them hubs that basically act as a server 

•  BitTorrent prevent free riding 
–  Allow the fastest peers to download from you 
– Occasionally let some free loaders download 
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Preventing Free-Riding 
•  Peer has limited upload bandwidth 

–  And must share it among multiple peers 

•  Prioritizing the upload bandwidth: tit for tat 
–  Favor neighbors that are uploading at highest rate 

•  Rewarding the top four neighbors 
– Measure download bit rates from each neighbor 
– Reciprocates by sending to the top four peers 
– Recompute and reallocate every 10 seconds 

•  Optimistic unchoking 
– Randomly try a new neighbor every 30 seconds 
–  So new neighbor has a chance to be a better partner 
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Gaming BitTorrent 
•  BitTorrent can be gamed, too 

–  Peer uploads to top N peers at rate 1/N 
–  E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3 
– … then peer uploading at rate 9 gets treated quite well 

•  Best to be the Nth peer in the list, rather than 1st 

– Offer just a bit more bandwidth than the low-rate peers 
–  But not as much as the higher-rate peers 
–  And you’ll still be treated well by others 

•  BitTyrant software 
– Uploads at higher rates to higher-bandwidth peers 
–  http://bittyrant.cs.washington.edu/ 
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BitTorrent Today 
•  Significant fraction of Internet traffic 

–  Estimated at 30% 
–  Though this is hard to measure 

•  Problem of incomplete downloads 
–  Peers leave the system when done 
– Many file downloads never complete 
–  Especially a problem for less popular content 

•  Still lots of legal questions remains 
•  Further need for incentives 
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Summary 
•  Evolution of peer-to-peer 

– Central directory (Napster) 
– Query flooding (Gnutella) 
– Hierarchical overlay (Kazaa, modern Gnutella) 

•  BitTorrent 
–  Focuses on parallel download 
–  Prevents free-riding 

•  Next: Distributed Hash Tables 
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