
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Peer-to-Peer Architecture --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
•  Two multicast algorithms for total ordering

–  Sequencer
–  ISIS

•  Multicast for causal ordering
– Uses vector timestamps

2

CSE 486/586

Today’s Question
•  How do we organize the nodes in a distributed

system?
•  Up to the 90’s

–  Prevalent architecture: client-server (or master-slave)
– Unequal responsibilities

•  Now
–  Emerged architecture: peer-to-peer
–  Equal responsibilities

•  Studying an example of client-server: DNS (last time)
•  Today: studying peer-to-peer as a paradigm (not just

as a file-sharing application, but will still use file-
sharing as the main example)

–  Learn the techniques and principles

3 CSE 486/586

Motivation: Distributing a Large File
•  A client-server architecture can do it…

4

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

CSE 486/586

Motivation: Distributing a Large File
•  …but sometimes not good enough.

–  Limited bandwidth
– One server can only serve so many clients.

•  Increase the upload rate from the server-side?
– Higher link bandwidth at the one server
– Multiple servers, each with their own link
– Requires deploying more infrastructure

•  Alternative: have the receivers help
– Receivers get a copy of the data
–  And then redistribute the data to other receivers
–  To reduce the burden on the server

5 CSE 486/586

Motivation: Distributing a Large File
•  Peer-to-peer to help

6

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

u1 u2
u3

u4

Upload rates ui

C 2

CSE 486/586

Challenges of Peer-to-Peer
•  Peers come and go

–  Peers are intermittently connected
– May come and go at any time
– Or come back with a different IP address

•  How to locate the relevant peers?
–  Peers that are online right now
–  Peers that have the content you want

•  How to motivate peers to stay in system?
– Why not leave as soon as download ends?
– Why bother uploading content to anyone else?

•  How to download efficiently?
–  The faster, the better

7 CSE 486/586

Locating Relevant Peers
•  Evolution of peer-to-peer

– Central directory (Napster)
– Query flooding (Gnutella)
– Hierarchical overlay (Kazaa, modern Gnutella)

•  Design goals
–  Scalability
–  Simplicity
– Robustness
–  Plausible deniability

8

CSE 486/586

The First: Napster

9

S

S

S

P

P

P P
P

P

Client machines
(“Peers”)

napster.com
Servers

Store their
own files

Store a directory, i.e.,
filenames with peer pointers

Filename Info about

 PennyLane.mp3 Beatles, @

 128.84.92.23:1006

 …..

CSE 486/586 10

S

S

S

P

P

P P
P

P

Peers

napster.com Servers

Store their own
files

Store peer pointers
for all files

3. Response
1. Query

2. All servers search their lists (ternary tree algo.)

4. ping candidates
5. download from best host

The First: Napster

CSE 486/586

The First: Napster

11

•  Server’s directory continually updated
–  Always know what file is currently available
–  Point of vulnerability for legal action

•  Peer-to-peer file transfer
– No load on the server
–  Plausible deniability for legal action (but not enough)

•  Proprietary protocol
–  Login, search, upload, download, and status operations
– No security: cleartext passwords and other vulnerability

•  Bandwidth issues
–  Suppliers ranked by apparent bandwidth & response time

•  Limitations:
– Decentralized file transfer, but centralized lookup

CSE 486/586

The Second: Gnutella
•  Complete decentralization

12

P

P

P

P

P
P

Servants (“Peers”)

P
Connected in an overlay graph (== each link is an implicit Internet path)

Store their own files

Also store
“peer pointers”

C 3

CSE 486/586

The Second: Gnutella

13

P

P

P

P

P
P

P

Query’s flooded out, ttl-restricted, forwarded only once

TTL=2

CSE 486/586

The Second: Gnutella

14

P

P

P

P

P
P

P

Successful results QueryHit’s routed on reverse path

CSE 486/586

The Second: Gnutella
•  Advantages

–  Fully decentralized
–  Search cost distributed
–  Processing per node permits powerful search semantics

•  Disadvantages
–  Search scope may be quite large
–  Search time may be quite long
– High overhead, and nodes come and go often

15 CSE 486/586

The Third: KaAzA
•  Middle ground between

Napster & Gnutella
•  Each peer is either a

group leader (super
peer) or assigned to a
group leader

–  TCP connection between
peer and its group leader

–  TCP connections between
some pairs of group
leaders

•  Group leader tracks the
content in all its children

16

ordinary peer

group-leader peer

neighoring relationships
in overlay network

CSE 486/586

The Third: KaZaA
•  A supernode stores a directory listing

(<filename,peer pointer>), similar to Napster servers
•  Supernode membership changes over time
•  Any peer can become (and stay) a supernode,

provided it has earned enough reputation
–  Kazaalite: participation level (=reputation) of a user between

0 and 1000, initially 10, then affected by length of periods of
connectivity and total number of uploads

– More sophisticated reputation schemes invented, especially
based on economics

•  A peer searches by contacting a nearby supernode

17 CSE 486/586

CSE 486/586 Administrivia
•  Please start PA2-B.
•  (In class) Midterm: 3/11

18

C 4

CSE 486/586

Now: BitTorrent
•  Key motivation: popular content

–  Popularity exhibits temporal locality (Flash Crowds)
–  E.g., Slashdot/Digg effect, CNN Web site on 9/11, release of

a new movie or game

•  Focused on efficient fetching, not searching
– Distribute same file to many peers
–  Single publisher, many downloaders

•  Preventing free-loading

19 CSE 486/586

Key Feature: Parallel Downloading
•  Divide large file into many pieces

– Replicate different pieces on different peers
–  A peer with a complete piece can trade with other peers
–  Peer can (hopefully) assemble the entire file

•  Allows simultaneous downloading
– Retrieving different parts of the file from different peers at

the same time
–  And uploading parts of the file to peers
–  Important for very large files

•  System Components
– Web server
–  Tracker
–  Peers

20

CSE 486/586

Tracker
•  Infrastructure node

–  Keeps track of peers participating in the torrent

•  Peers register with the tracker
–  Peer registers when it arrives
–  Peer periodically informs tracker it is still there

•  Tracker selects peers for downloading
– Returns a random set of peers
–  Including their IP addresses
–  So the new peer knows who to contact for data

•  Can be “trackerless” using DHT

21 CSE 486/586

Chunks
•  Large file divided into smaller pieces

–  Fixed-sized chunks
–  Typical chunk size of 256 Kbytes

•  Allows simultaneous transfers
– Downloading chunks from different neighbors
– Uploading chunks to other neighbors

•  Learning what chunks your neighbors have
–  Periodically asking them for a list

•  File done when all chunks are downloaded

22

CSE 486/586

BitTorrent Protocol

23

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

.to
rre

nt

CSE 486/586

BitTorrent Protocol

24

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Get-announce

Web Server

C 5

CSE 486/586

BitTorrent Protocol

25

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Response-peer lis
t

Web Server

CSE 486/586

BitTorrent Protocol

26

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Shake-hand

Web Server

Shake-hand

CSE 486/586

BitTorrent Protocol

27

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

pieces

Web Server

CSE 486/586

BitTorrent Protocol

28

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces pieces

pieces

Web Server

CSE 486/586

BitTorrent Protocol

29

Web page

with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Get-announce

Response-peer lis
t

pieces pieces

pieces

Web Server

CSE 486/586

Chunk Request Order
•  Which chunks to request?

– Could download in order
–  Like an HTTP client does

•  Problem: many peers have the early chunks
–  Peers have little to share with each other
–  Limiting the scalability of the system

•  Problem: eventually nobody has rare chunks
–  E.g., the chunks need the end of the file
–  Limiting the ability to complete a download

•  Solutions: random selection and rarest first

30

C 6

CSE 486/586

Rarest Chunk First
•  Which chunks to request first?

–  The chunk with the fewest available copies
–  I.e., the rarest chunk first

•  Benefits to the peer
–  Avoid starvation when some peers depart

•  Benefits to the system
–  Avoid starvation across all peers wanting a file
–  Balance load by equalizing # of copies of chunks

31 CSE 486/586

Preventing Free-Riding
•  Vast majority of users are free-riders

– Most share no files and answer no queries
– Others limit # of connections or upload speed

•  A few “peers” essentially act as servers
–  A few individuals contributing to the public good
– Making them hubs that basically act as a server

•  BitTorrent prevent free riding
–  Allow the fastest peers to download from you
– Occasionally let some free loaders download

32

CSE 486/586

Preventing Free-Riding
•  Peer has limited upload bandwidth

–  And must share it among multiple peers

•  Prioritizing the upload bandwidth: tit for tat
–  Favor neighbors that are uploading at highest rate

•  Rewarding the top four neighbors
– Measure download bit rates from each neighbor
– Reciprocates by sending to the top four peers
– Recompute and reallocate every 10 seconds

•  Optimistic unchoking
– Randomly try a new neighbor every 30 seconds
–  So new neighbor has a chance to be a better partner

33 CSE 486/586

Gaming BitTorrent
•  BitTorrent can be gamed, too

–  Peer uploads to top N peers at rate 1/N
–  E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
– … then peer uploading at rate 9 gets treated quite well

•  Best to be the Nth peer in the list, rather than 1st

– Offer just a bit more bandwidth than the low-rate peers
–  But not as much as the higher-rate peers
–  And you’ll still be treated well by others

•  BitTyrant software
– Uploads at higher rates to higher-bandwidth peers
–  http://bittyrant.cs.washington.edu/

34

CSE 486/586

BitTorrent Today
•  Significant fraction of Internet traffic

–  Estimated at 30%
–  Though this is hard to measure

•  Problem of incomplete downloads
–  Peers leave the system when done
– Many file downloads never complete
–  Especially a problem for less popular content

•  Still lots of legal questions remains
•  Further need for incentives

35 CSE 486/586

Summary
•  Evolution of peer-to-peer

– Central directory (Napster)
– Query flooding (Gnutella)
– Hierarchical overlay (Kazaa, modern Gnutella)

•  BitTorrent
–  Focuses on parallel download
–  Prevents free-riding

•  Next: Distributed Hash Tables

36

C 7

CSE 486/586 37

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC), Michael
Freedman (Princeton), and Jennifer Rexford
(Princeton).

