

CSE 486/586

Core Issue: Handling Replication

- Replication is (almost) inevitable.
 Failures, performance, load balance, etc.
- We will spend most of our time looking at this in the second half of the semester.
- · Data replication
 - Read/write can go to any server.
 - How to provide a consistent view? (i.e., what consistency guarantee?) linearizability, sequential consistency, causal consistency, etc.
 - What happens when things go wrong?
- · State machine replication
 - How to agree on the instructions to execute?
 - How to handle failures and malicious servers?

CSE 486/586

Why Not Satisfied?

- What we discussed in mutual exclusion is one big lock.
 - Everyone else has to wait.
 - It does not necessarily deal with failures.
- Performance
- Observation: we can interleave some operations from different processes.
- Failure
 - If a process crashes while holding a lock
- · Let's go beyond simple locking!

CSE 486/586

21

