
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Concurrency Control --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Banking Example (Once Again)
•  Banking transaction for a customer (e.g., at ATM or

browser)
–  Transfer $100 from saving to checking account
–  Transfer $200 from money-market to checking account
– Withdraw $400 from checking account

•  Transaction
1.  savings.deduct(100)
2.  checking.add(100)
3.  mnymkt.deduct(200)
4.  checking.add(200)
5.  checking.deduct(400)
6.  dispense(400)

2

CSE 486/586

Transaction
•  Abstraction for grouping multiple operations into one
•  A transaction is indivisible (atomic) from the point of

view of other transactions
– No access to intermediate results/states
–  Free from interference by other operations

•  Primitives
–  begin(): begins a transaction
–  commit(): tries completing the transaction
–  abort(): aborts the transaction & rolls back to the previous

state (as if nothing happened)

•  Why abort()?
–  A failure happens in the middle of execution.
–  A transaction is part of a bigger transaction (i.e., it’s a sub-

transaction), and the bigger transaction needs abort.
–  Etc.

3 CSE 486/586

Properties of Transactions: ACID
•  Atomicity: All or nothing
•  Consistency: if the server starts in a consistent state,

the transaction ends with the server in a consistent
state.

•  Isolation: Each transaction must be performed
without interference from other transactions, i.e., the
non-final effects of a transaction must not be visible
to other transactions.

•  Durability: After a transaction has completed
successfully, all its effects are saved in permanent
storage.

4

CSE 486/586

This Week
•  Question: How to support transactions?

– Multiple transactions share data.

•  What would be your first strategy (hint: locks)?
– One transaction at a time with one big lock, i.e., complete

serialization
•  Two issues

–  Performance
–  Abort

5 CSE 486/586

Performance?

•  Process 1

lock(mutex);
savings.deduct(100);
checking.add(100);
mnymkt.deduct(200);
checking.add(200);
checking.deduct(400);
dispense(400);
unlock(mutex);

•  Process 2

lock(mutex);
savings.deduct(200);
checking.add(200);
unlock(mutex);

6

C 2

CSE 486/586

Abort?

 1. savings.deduct(100)
 2. checking.add(100)
 3. mnymkt.deduct(200)
 4. checking.add(200)
 5. checking.deduct(400)
 6. dispense(400)

7

An abort at these
points means the
customer loses
money; we need
to restore old state

An abort at
these points
does not cause
lost money, but
old steps
cannot be
repeated

CSE 486/586

This Week
•  Question: How to support transactions?

– Multiple transactions share data.

•  What would be your first strategy (hint: locks)?
– Complete serialization
– One transaction at a time with one big lock
–  Two issues: Performance and abort

•  First, let’s see how we can improve performance.
–  By executing multiple transactions concurrently

8

CSE 486/586

What Can Go Wrong?

 Transaction T1 Transaction T2
balance = b.getBalance()

 balance = b.getBalance()
 b.setBalance(balance*1.1)

b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

•  T1/T2’s update on the shared object, “b”, is lost

9

100 200 300a: b: c:

280c:

80a:

220b:

220b:

CSE 486/586

Lost Update Problem
•  One transaction causes loss of info. for another:
consider three account objects

 Transaction T1 Transaction T2
balance = b.getBalance()

 balance = b.getBalance()
 b.setBalance(balance*1.1)

b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

•  T1/T2’s update on the shared object, “b”, is lost

10

100 200 300a: b: c:

280c:

80a:

220b:

220b:

CSE 486/586

What Can Go Wrong?

 Transaction T1 Transaction T2
a.withdraw(100)

 total = a.getBalance()
 total = total + b.getBalance

b.deposit(100)
 total = total + c.getBalance

•  T1’s partial result is used by T2, giving the wrong
result

11

100 200

0.00

a: b:

 00a:

500

200

300c:

total

300b:

CSE 486/586

Inconsistent Retrieval Problem
•  Partial, incomplete results of one transaction are
retrieved by another transaction.

 Transaction T1 Transaction T2
a.withdraw(100)

 total = a.getBalance()
 total = total + b.getBalance

b.deposit(100)
 total = total + c.getBalance

•  T1’s partial result is used by T2, giving the wrong
result

12

100 200

0.00

a: b:

 00a:

500

200

300c:

total

300b:

C 3

CSE 486/586

What This Means
•  Question: How to support transactions (with locks)?

– Multiple transactions share data.

•  Complete serialization is correct, but performance
and abort are two issues.

•  Executing transactions concurrently for performance
–  Problem: Not all current executions produce a correct

outcome

13 CSE 486/586

What is “Correct”?
•  How would you define correctness?
•  For example, two independent transactions made by

me and my wife on our three accounts.
•  What do we care about at the end of the day?

•  Correct final balance for each account

 Transaction T1 Transaction T2
balance = b.getBalance() balance = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) c.withdraw(balance*0.1)

14

100 200 300a: b: c:

CSE 486/586

Concurrency Control: Providing
“Correct” Interleaving
•  An interleaving of the operations of 2 or more transactions is

said to be serially equivalent if the combined effect is the same
as if these transactions had been performed sequentially in
some order.

 Transaction T1 Transaction T2
balance = b.getBalance()
b.setBalance = (balance*1.1)

 balance = b.getBalance()

 b.setBalance(balance*1.1)
a.withdraw(balance* 0.1)

 c.withdraw(balance*0.1)

15

100 200 300a: b: c:

278c:
a:

242b:

b: 220

80

== T1 (complete) followed
by T2 (complete)

CSE 486/586

CSE 486/586 Administrivia
•  Grading will be done this week.
•  PA3 will be out this week.

16

CSE 486/586

Providing Serial Equivalence
•  What operations are we considering?

•  Read/write

•  What operations matter for correctness?
•  When write is involved

 Transaction T1 Transaction T2
balance = b.getBalance() balance = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) c.withdraw(balance*0.1)

17

100 200 300a: b: c:

CSE 486/586

Conflicting Operations
•  Two operations are said to be in conflict, if their combined effect

depends on the order they are executed, e.g., read-write, write-
read, write-write (all on same variables). NOT read-read, not on
different variables.

18

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of read operations
does not depend on the order in which they are
executed

read write Yes Because the effect of a read and a write operation
depends on the order of their execution

write write Yes Because the effect of a pair of write operations
depends on the order of their execution

C 4

CSE 486/586

Conditions for Correct Interleaving
•  What should we need to do to guarantee serial

equivalence with conflicting operations?
•  Case 1

•  T1.1 -> T1.2 -> T2.1 -> T2.2 -> T1.3 -> T2.3

•  Case 2
•  T1.1 -> T2.1 -> T2.2 -> T1.2 -> T1.3 -> T2.3

•  Which one’s correct and why?

19

Transaction T1 Transaction T2
1. balance = b.getBalance() 1. balance = b.getBalance()
2. b.setBalance = (balance*1.1) 2. b.setBalance(balance*1.1)
3. a.withdraw(balance* 0.1) 3. c.withdraw(balance*0.1)

CSE 486/586

Conflicting Operations
•  Insight for serial equivalence

•  Outcomes of write operations in one transaction to all
shared objects should be either consistently visible to the
other transaction or the other way round.

•  The effect of an operation refers to
•  The value of an object set by a write operation
•  The result returned by a read operation.

•  Two transactions are serially equivalent if and only if all pairs of
conflicting operations (pair containing one operation from each
transaction) are executed in the same order (transaction order)
for all objects (data) they both access.

20

CSE 486/586

Example of Conflicting Operations
•  An interleaving of the operations of 2 or more transactions is said
to be serially equivalent if the combined effect is the same as if
these transactions had been performed sequentially (in some
order).

 Transaction T1 Transaction T2
balance = b.getBalance()
b.setBalance = (balance*1.1)

 balance = b.getBalance()

 b.setBalance(balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

21

100 200 300 a: b: c:

278 c:
a:

242 b:

b: 220

80

== T1 (complete) followed

 by T2 (complete)

Pairs of Conflicting Operations

CSE 486/586

Another Example
Transaction T1 Transaction T2
 x= a.read()
 a.write(20)

 y = b.read()
 b.write(30)
 b.write(x)
 z = a.read()

 x= a.read()
 a.write(20)

 z = a.read()
 b.write(x)
 y = b.read()
 b.write(30)

22

Serially
equivalent
interleaving
of
operations

Conflicting
Ops.

Non-
serially
equivalent
interleaving
of
operations

CSE 486/586

Inconsistent Retrievals Problem

23

Transaction V:
a.withdraw(100)
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100

total = total+b.getBalance() $300

total = total+c.getBalance()

b.deposit(100) $300

Both withdraw and deposit contain a write operation

CSE 486/586

Serially-Equivalent Ordering

24

Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400
total = total+c.getBalance()...

C 5

CSE 486/586

Summary
•  Transactions need to provide ACID
•  Serial equivalence defines correctness of executing

concurrent transactions
•  It is handled by ordering conflicting operations

25 CSE 486/586 26

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

