
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Consistency --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap: Concurrency (Transactions)
•  Question: How to support transactions (with locks)?

– Multiple transactions share data.

•  First strategy: Complete serialization
– One transaction at a time with one big lock
– Correct, but at the cost of performance

•  How to improve performance?
–  Let’s see if we can concurrently execute transactions.

2

CSE 486/586

Recap: Concurrency (Transactions)
•  Problem: Not all current executions produce a correct

outcome
–  Serial equivalence & strict execution must be met.

•  How do we meet the requirements using locks?
– Overall strategy: using more and more fine-grained locking
– No silver bullet. Fine-grained locks have their own

implications.
–  Exclusive locks (per-object locks)
– Non-Exclusive locks (read/write locks)
– Other finer-grained locks (e.g., two-version locking)

•  Atomic commit problem
– Commit or abort (consensus)
–  2PC

3 CSE 486/586

Consistency with Data Replicas

4

Client Front End
RM

RM

RM
Client Front End

Client Front End

Service
server

server

server

Replica Manager

•  Consider that this is a distributed storage system that
serves read/write requests.

•  Multiple copies of a same object stored at different
servers

•  Question: How to maintain consistency across different
data replicas?

CSE 486/586

Consistency
•  Why replicate?
•  Increased availability of service. When servers fail or

when the network is partitioned.
–  P: probability that one server fails= 1 – P= availability of

service. e.g. P = 5% => service is available 95% of the time.
–  Pn: probability that n servers fail= 1 – Pn= availability of

service. e.g. P = 5%, n = 3 => service available 99.875% of
the time

•  Fault tolerance
– Under the fail-stop model, if up to f of f+1 servers crash, at

least one is alive.
•  Load balancing

– One approach: Multiple server IPs can be assigned to the
same name in DNS, which returns answers round-robin.

5 CSE 486/586

This Week
•  We will look at different consistency guarantees

(models).
•  We’ll start from the strongest guarantee, and

gradually relax the guarantees.
–  Linearizability (or sometimes called strong consistency)
–  Sequential consistency
– Causal consistency
–  Eventual consistency

•  Different applications need different consistency
guarantees.

•  This is all about client-side perception.
– When a read occurs, what do you return?

•  First
–  Linearizability: we’ll look at the concept first, then how to

implement it later. 6

C 2

CSE 486/586

Our Expectation with Data
•  Consider a single process using a filesystem
•  What do you expect to read?

•  Our expectation (as a user or a developer)

•  A read operation returns the most recent write.
•  This forms our basic expectation from any file or storage

system.
•  Linearizability meets this basic expectation.

•  But it extends the expectation to handle multiple
processes…

•  …and multiple replicas.
•  The strongest consistency model

7

P1
x.write(2) x.read() ?

CSE 486/586

Expectation with Multiple Processes
•  What do you expect to read?

–  A single filesystem with multiple processes

•  Our expectation (as a user or a developer)
•  A read operation returns the most recent write, regardless

of the clients.
•  We expect that a read operation returns the most recent

write according to the single actual-time order.
•  In other words, read/write should behave as if there were a

single (combined) client making all the requests.
8

P1
x.write(5)

P2
x.write(2) x.read() ?

CSE 486/586

Expectation with Multiple Copies
•  What do you expect to read?

–  A single process with multiple servers with copies

•  Our expectation (as a user or a developer)
•  A read operation returns the most recent write, regardless

of how many copies there are.
•  Read/write should behave as if there were a single copy.

9

P1
x.write(2) x.read() ?

CSE 486/586

Linearizability
•  Three aspects

–  A read operation returns the most recent write,
– …regardless of the clients,
– …according to the single actual-time ordering of requests.

•  Or, put it differently, read/write should behave as if
there were,

– …a single client making all the (combined) requests in their
original actual-time order,

– …over a single copy.

•  You can say that your storage system guarantees
linearizability when it provides single-client, single-
copy semantics where a read returns the most recent
write.

10

CSE 486/586

Linearizability Exercise
•  Assume that the following happened with object x

over a linearizable storage.
– C1: x.write(A)
– C2: x.write(B)
– C3: x.read() à B, x.read() à A
– C4: x.read() à B, x.read() à A

•  What would be an actual-time ordering of the events?
– One possibility: C2 (write B) -> C3 (read B) -> C4 (read B) ->

C1 (write A) -> C3 (read A) -> C4 (read A)

•  How about the following?
– C1: x.write(A)
– C2: x.write(B)
– C3: x.read() à B, x.read() à A
– C4: x.read() à A, x.read() à B

11 CSE 486/586

CSE 486/586 Administrivia
•  PA3 deadline: 4/3 (Friday)
•  Grading is going on with PA2B and midterm.

12

C 3

CSE 486/586

Linearizability Subtleties
•  Notice any problem?

13 North Carolina California

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) ?

CSE 486/586

Linearizability Subtleties
•  A read/write operation is never a dot!

–  It takes time. Many things are involved, e.g., network,
multiple disks, etc.

– Read/write latency: the time measured right before the call
and right after the call from the client making the call.

•  Clear-cut (e.g., black---write & red---read)

•  Not-so-clear-cut (parallel)
– Case 1:

– Case 2:

– Case 3:
14

CSE 486/586

Linearizability Subtleties
•  Let’s go back to the single-client, single-copy

semantics.
•  With a single process and a single copy, can

overlaps happen?
– No, these are cases that do not arise with a single process

and a single copy.
•  Thus, we (as a system designer) have freedom to

impose an order.
–  Linearizability does not mandate any particular order for

overlapping operations.
–  You can implement a particular ordering strategy.
–  As long as there is a single, interleaving ordering for

overlapping operations, it’s fine.
–  This ordering should still provide the single-client, single-

copy semantics.

15 CSE 486/586

Linearizability Subtleties
•  Definite guarantee

•  Relaxed guarantee when overlap
•  Case 1

•  Case 2

•  Case 3

16

CSE 486/586

Linearizability Examples
•  Example 1

•  Example 2

17

a.write(x)
a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x
If this were
a.read() -> 0,
would it support
linearizability?

No

CSE 486/586

Linearizability Examples
•  In example 2, what are the constrains?

•  Constraints
–  a.read() à 0 happens before a.read() àx (cannot change

the order).
–  a.read() à x happens before a.read() àx (cannot change

the order).
–  The rest are up for grabs.

18

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

C 4

CSE 486/586

Linearizability Examples
•  In example 2, why would a.read() return 0 and x

when they’re overlapping?

•  This assumes that there’s a particular storage system
that shows this behavior.

•  At some point between a read/write request sent and
returned, the result becomes visible.

–  E.g., you read a value from physical storage, prepare it for
return (e.g., putting it in a return packet, i.e., making it
visible), and actually return it.

– Or you actually write a value to a physical disk, making it
visible (out of multiple disks, which might actually write at
different points).

19

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

CSE 486/586

Linearizability Examples
•  Example 3

•  Constraints
–  a.read() à x and a.read() à x: we cannot reorder these.
–  a.read() à y and a.read() à x: we cannot reorder these.
–  The rest is up for grabs.

20

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)

CSE 486/586

Linearizability (Textbook Definition)
•  Let the sequence of read and update operations that

client i performs in some execution be oi1, oi2,….
–  "Program order" for the client

•  A replicated shared object service is linearizable if for
any execution (real), there is some interleaving of
operations (virtual) issued by all clients that:

–  meets the specification of a single correct copy of objects
–  is consistent with the actual times at which each operation

occurred during the execution

•  Main goal: any client will see (at any point of time) a
copy of the object that is correct and consistent

•  The strongest form of consistency

21 CSE 486/586

Summary
•  Linearizability

–  Single-client, Single-copy semantics

•  A read operation returns the most recent write,
regardless of the clients, according to their actual-
time ordering.

22

CSE 486/586 23

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

