
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Consistency --- 3

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  Consistency

–  Linearizability
–  Sequential consistency

•  Chain replication
•  Primary-backup (passive) replication
•  Active replication

2

CSE 486/586

Two More Consistency Models
•  Even more relaxed

– We don’t even care about providing an illusion of a single
copy.

•  Causal consistency
– We care about ordering causally related write operations

correctly.

•  Eventual consistency
–  As long as we can say all replicas converge to the same

copy eventually, we’re fine.

3 CSE 486/586

Relaxing the Guarantees
•  Do we need sequential consistency?

•  Does everyone need to see these in this particular
order? What kind of ordering matters? (Hint: causal)

4

CSE 486/586

Relaxing the Guarantees
•  Sequential consistency

–  Still single-client, single-copy semantics, it’s just that the
single-client ordering does not strictly follow the actual-time
order.

–  Every client should see the same write (update) order (every
copy should apply all writes in the same order), since it
works as if all clients read out of a single copy.

•  E.g., writes are not applied in the same order:
–  P1: a.write(A)
–  P2: a.write(B)
–  P3: a.read()->B a.read()->A
–  P4: a.read()->A a.read()->B

•  In the previous scenario,
–  Sequential consistency: All clients (all users’ browsers) will

see all posts in the same order.

5 CSE 486/586

Relaxing the Guarantees
•  For some applications, different clients (e.g., users)

do not need to see the writes in the same order, but
causality is still important (e.g., facebook post-like
pairs).

•  Causal consistency
– More relaxed than sequential consistency
– Clients can read values out of order, i.e., it doesn’t behave

as a single copy anymore.
– Clients read values in-order for causally-related writes.

•  How do we define “causal relations” between two
writes?

–  (Roughly) One client reads something that another client
has written; then the client writes something.

6

C 2

CSE 486/586

Causal Consistency
•  Example 1:

7

P1:
P2:
P3:
P4:

W(x)1 W(x) 3
R(x)1 W(x)2
R(x)1
R(x)1

R(x)3 R(x)2
R(x)2 R(x) 3

This sequence obeys causal consistency

Concurrent writesCausally related

CSE 486/586

Causal Consistency Example 2
•  Causally consistent?

•  No!

8

P1:
P2:
P3:
P4:

W(x)1
R(x)1 W(x)2

R(x)2 R(x)1
R(x)1 R(x) 2

Causally related

CSE 486/586

Causal Consistency Example 3
•  Causally consistent?

•  Yes!

9

P1:
P2:
P3:
P4:

W(x)1
W(x)2

R(x)2 R(x)1
R(x)1 R(x) 2

CSE 486/586

Implementing Causal Consistency
•  We drop the notion of giving an illusion of a single

copy.
– Writes can be applied in different orders across copies.
– Causally-related writes do need to be applied in the same

order for all copies.

•  Need a mechanism to keep track of causally-related
writes.

•  Due to the relaxed requirements, low latency is more
tractable.

10

CSE 486/586

CSE 486/586 Administrivia
•  Nothing really

11 CSE 486/586

Relaxing Even Further
•  Let’s just do best effort to make things consistent.
•  Eventual consistency

–  Popularized by the CAP theorem.
–  The main problem is network partitions.

12

Client + front end

B

withdraw(B, 4)

Client + front end

Replica managers

deposit(B,3);

UT
Network
partition

B

B B

C 3

CSE 486/586

Dilemma
•  In the presence of a network partition:
•  In order to keep the replicas consistent, you need to

block.
–  From the outside observer, the system appears to be

unavailable.
•  If we still serve the requests from two partitions, then

the replicas will diverge.
–  The system is available, but no consistency.

•  The CAP theorem explains this dilemma.

13 CSE 486/586

CAP Theorem
•  Consistency
•  Availability

– Respond with a reasonable delay

•  Partition tolerance
–  Even if the network gets partitioned

•  In the presence of a partition, which one to choose?
Consistency or availability?

•  Brewer conjectured in 2000, then proven by Gilbert
and Lynch in 2002.

14

CSE 486/586

Coping with CAP
•  The main issue is the Internet.

–  As the system grows to span geographically distributed
areas, network partitioning sometimes happens.

•  Then the choice is either giving up availability or
consistency

•  A design choice: What makes more sense to your
scenario?

•  Giving up availability and retaining consistency
–  E.g., use 2PC
–  Your system blocks until everything becomes consistent.

•  Giving up consistency and retaining availability
–  Eventual consistency

15 CSE 486/586

Dealing with Network Partitions
•  During a partition, pairs of conflicting transactions

may have been allowed to execute in different
partitions. The only choice is to take corrective action
after the network has recovered

–  Assumption: Partitions heal eventually

•  Abort one of the transactions after the partition has
healed

•  Basic idea: allow operations to continue in one or
some of the partitions, but reconcile the differences
later after partitions have healed

16

CSE 486/586

Quorum Approaches
•  Quorum approaches used to decide whether reads

and writes are allowed
•  There are two types: pessimistic quorums and

optimistic quorums
•  In the pessimistic quorum philosophy, updates are

allowed only in a partition that has the majority of
RMs

– Updates are then propagated to the other RMs when the
partition is repaired.

17 CSE 486/586

Static Quorums
•  The decision about how many RMs should be

involved in an operation on replicated data is called
Quorum selection

•  Quorum rules state that:
–  At least r replicas must be accessed for read
–  At least w replicas must be accessed for write
–  r + w > N, where N is the number of replicas
–  w > N/2
–  Each object has a version number or a consistent

timestamp

18

C 4

CSE 486/586

Static Quorums
•  r = 2, w = 2, N = 3: r + w > N, w > N/2

19

N0 N1 N2

Client 1:
Write

Client 2:
Read

CSE 486/586

Static Quorums
•  What does r + w > N mean?

–  The only way to satisfy this condition is that there’s always
an overlap between the reader set and the write set.

–  There’s always some replica that has the most recent write.

•  What does w > N/2 mean?
– When there’s a network partition, only the partition with more

than half of the RMs can perform write operations.
–  The rest will just serve reads with stale data.

•  R and W are tunable:
–  E.g., N=3, r=1, w=3: High read throughput, perhaps at the

cost of write throughput.

20

CSE 486/586

Optimistic Quorum Approaches
•  An Optimistic Quorum selection allows writes to

proceed in any partition.
•  “Write, but don’t commit”

– Unless the partition gets healed in time.

•  Resolve write-write conflicts after the partition heals.
•  Optimistic Quorum is practical when:

– Conflicting updates are rare
– Conflicts are always detectable
– Damage from conflicts can be easily confined
– Repair of damaged data is possible or an update can be

discarded without consequences
–  Partitions are relatively short-lived

21 CSE 486/586

Summary
•  Causal consistency & eventual consistency
•  Quorums

–  Static
– Optimistic
–  View-based

22

CSE 486/586 23

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

