
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Gossiping

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  Consistency models

–  Linearizability
–  Sequential consistency
– Causal consistency
–  Eventual consistency

•  Depending on application scenarios, one consistency
model makes more sense that others.

•  As you relax consistency guarantees, you have more
room for performance optimization.

2

CSE 486/586

Recall: Passive Replication

•  Request Communication: the request is issued to the
primary RM and carries a unique request id.

•  Coordination: Primary takes requests atomically, in
order, checks id (resends response if not new id.)

•  Execution: Primary executes & stores the response
•  Agreement: If update, primary sends updated state/

result, req-id and response to all backup RMs (1-
phase commit enough).

•  Response: primary sends result to the front end

3

Client Front End
RM

RM

RM
Client Front End RM

primary

Backup

Backup
Backup

….

CSE 486/586

Eager vs. Lazy Replication
•  Eager replication, e.g., B-multicast, R-multicast, etc.

(previously in the course)
– Multicast request to all RMs immediately
–  (Roughly) replicating time-sensitive data, e.g., high-volume

reads/writes
•  Alternative: Lazy replication

–  Allow replicas to converge eventually and lazily
–  Propagate updates and queries lazily, e.g., when network

bandwidth available
– May provide weaker consistency than sequential

consistency, but improves performance
–  (Roughly) replicating non-time-sensitive data, e.g., daily

backup replication
•  Lazy replication can be provided by using the

gossiping

4

CSE 486/586

Revisiting Multicast

5

Distributed
Group of
 “Nodes”=
Processes
at Internet-
based hosts

Node with a piece of information

to be communicated to everyone

CSE 486/586

Fault-Tolerance and Scalability

6

Multicast sender

Multicast Protocol

n  Nodes may crash
n  Packets may
 be dropped
n  Possibly
1000’s of nodes

X

X

C 2

CSE 486/586

B-Multicast

7

UDP/TCP packets

n  Simplest
 implementation

n  Problems?

CSE 486/586

R-Multicast

8

UDP/TCP packets

n  Stronger
guarantees

n  Overhead is
quadratic in N

CSE 486/586

Any Other?
•  E.g., tree-based multicast

9

UDP/TCP packets

n  e.g., IPmulticast, SRM
 RMTP, TRAM,TMTP
n  Tree setup
 and maintenance

n  Problems?

CSE 486/586

CSE 486/586 Administrivia
•  PA4 will be released soon.

10

CSE 486/586

Another Approach

11

Multicast sender

CSE 486/586

Another Approach

12

Gossip messages (UDP)

Periodically, transmit to
b random targets

C 3

CSE 486/586

Another Approach

13

Other nodes do same
after receiving multicast Gossip messages (UDP)

CSE 486/586

Another Approach

14

CSE 486/586

 Uninfected

“Gossip” (or “Epidemic”) Multicast

15

 Protocol rounds (local clock)
 b random targets per round

 Infected

Gossip Message (UDP)

CSE 486/586

Properties
•  Lightweight
•  Quick spread
•  Highly fault-tolerant
•  Analysis from old mathematical branch of

Epidemiology [Bailey 75]
•  Parameters c,b:

–  c for determining rounds: (c*log(n)), b: # of nodes to contact
– Can be small numbers independent of n, e.g., c=2; b=2;

•  Within c*log(n) rounds, [low latency]
–  all but of nodes receive the multicast

 [reliability]

–  each node has transmitted no more than c*b*log(n) gossip
messages [lightweight]

16

2

1
−cbn

CSE 486/586

Fault-Tolerance
•  Packet loss

–  50% packet loss: analyze with b replaced with b/2
–  To achieve same reliability as 0% packet loss, takes twice

as many rounds

•  Node failure
–  50% of nodes fail: analyze with n replaced with n/2 and b

replaced with b/2
–  Same as above

17 CSE 486/586

Fault-Tolerance
•  With failures, is it possible that the epidemic might

die out quickly?
•  Possible, but improbable:

– Once a few nodes are infected, with high probability, the
epidemic will not die out

–  So the analysis we saw in the previous slides is actually
behavior with high probability

[Galey and Dani 98]

•  The same applicable to:
– Rumors
–  Infectious diseases
–  An Internet worm

•  Some implementations
–  Amazon Web Services EC2/S3 (rumored)
– Usenet NNTP (Network News Transport Protocol)

18

C 4

CSE 486/586

Gossiping Architecture
•  The RMs exchange “gossip” messages

–  Periodically and amongst each other.
– Gossip messages convey updates they have each received

from clients, and serve to achieve convergence of all RMs.

•  Objective: provisioning of highly available service.
Guarantee:

–  Each client obtains a consistent service over time: in
response to a query, an RM may have to wait until it
receives “required” updates from other RMs. The RM then
provides client with data that at least reflects the updates
that the client has observed so far.

– Relaxed consistency among replicas: RMs may be
inconsistent at any given point of time. Yet all RMs
eventually receive all updates and they apply updates with
ordering guarantees. Can be used to provide sequential
consistency.

19 CSE 486/586

Gossip Architecture

20

Query Val

FE

RM RM

RM

Query, prev Val, new

Update

FE

Update, prev Update id

Service

Clients

gossip

CSE 486/586

Using Gossip for Failure Detection:
Gossip-style Heartbeating

21

All-to-all heartbeating

•  Each process sends out
heartbeats to every other
process

•  Con: Slow process/link causes
false positives

J Using gossip to
spread heartbeats
gives better accuracy

pi

CSE 486/586

Gossip-Style Failure Detection

22

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

• Processes periodically
gossip their membership list

• On receipt, the local
membership list is updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at process
2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

CSE 486/586

Gossip-Style Failure Detection
•  If the heartbeat has not increased for more than Tfail

seconds (according to local time),
the member is considered failed

•  But don’t delete it right away
•  Wait another Tcleanup seconds, then delete the

member from the list

23 CSE 486/586

Gossip-Style Failure Detection

24

•  What if an entry pointing to a failed process is deleted
right after Tfail seconds?

•  Fix: remember for another Tfail

•  Ignore gossips for failed members
– Don’t include failed members in go- -ssip messages

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at process
2

C 5

CSE 486/586

Summary
•  Eager replication vs. lazy replication

–  Lazy replication propagates updates in the background

•  Gossiping
– One strategy for lazy replication
– High-level of fault-tolerance & quick spread

•  Another use case for gossiping
–  Failure detection

25 CSE 486/586 26

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

