CSE 486/586 Distributed Systems
Distributed File Systems

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

Recap

« Distributed transactions with replication
— One copy serializability
— Primary copy replication
— Read-one/write-all replication
— Available copies replication

CSE 486/586, Spring 2014

~

Local File Systems

« File systems provides file management.
— Name space

— API for file operations (create, delete, open, close, read,
write, append, truncate, etc.)

— Physical storage management & allocation (e.g., block
storage)

— Security and protection (access control)
« Name space is usually hierarchical.
— Files and directories
« File systems are mounted.
— Different file systems can be in the same name space.

CSE 486/586, Spring 2014

Traditional Distributed File Systems

* Goal: emulate local file system behaviors
— Files not replicated
— No hard performance guarantee
« But,
— Files located remotely on servers
— Multiple clients access the servers
* Why?
— Users with multiple machines
— Data sharing for multiple users
— Consolidated data management (e.g., in an enterprise)

CSE 486/586, Spring 2014

Requirements

< Transparency: a distributed file system should
appear as if it's a local file system

— Access transparency: it should support the same set of
operations, i.e., a program that works for a local file system
should work for a DFS.

— (File) Location transparency: all clients should see the same
name space.

— Migration transparency: if files move to another server, it
shouldn’t be visible to users.

— Performance transparency: it should provide reasonably
consistent performance.

— Scaling transparency: it should be able to scale
incrementally by adding more servers.

CSE 486/586, Spring 2014

Requirements

Concurrent updates should be supported.

Fault tolerance: servers may crash, msgs can be lost,
etc.

Consistency needs to be maintained.

Security: access-control for files & authentication of
users

CSE 486/586, Spring 2014

File Server Architecture

Client computer Server computer

Application Application Directory service

program program

Flat file service

Client module

=sss

CSE 486/586, Spring 2014 7

Components

« Directory service
— Meta data management
— Creates and updates directories (hierarchical file structures)
— Provides mappings between user names of files and the
unique file ids in the flat file structure.
* Flat file service
— Actual data management
— File operations (create, delete, read, write, access control,
etc.)
« These can be independently distributed.

— E.g., centralized directory service & distributed flat file
service

CSE 486/586, Spring 2014 8

Sun NFS

Client Computer Server Computer

Application Application

UNIX
Program Program Kernel
Virtual File System l Virtual File System
Other NFS NFS
File Client Protocol

System | | System

CSE 486/586, Spring 2014 9

VFS

< A translation layer that makes file systems pluggable
& co-exist

— E.g., NFS, EXT2, EXT3, ZFS, etc.

» Keeps track of file systems that are available locally
and remotely.

« Passes requests to appropriate local or remote file
systems

« Distinguishes between local and remote files.

CSE 486/586, Spring 2014 10

NFS Mount Service

N AN AN
§7L_Hudent/s|t} llﬁsgl\

mth john bob - pet jim bob ...
Server 1 Client Server 2
] Each server keeps a record of local files available for

Remote "eMote mounting. Clients use a mount command for
Mount remote mounting, providing name mappings

CSE 486/586, Spring 2014 1

NFS Basic Operations

« Client
— Transfers blocks of files to and from server via RPC
« Server

— Provides a conventional RPC interface at a well-known port
on each host

— Stores files and directories
* Problems?

— Performance

— Failures

CSE 486/586, Spring 2014 12

Ny

Improving Performance

« Let’s cache!

« Server-side
— Typically done by OS & disks anyway
— A disk usually has a cache built-in.

— OS caches file pages, directories, and file attributes that
have been read from the disk in a main memory buffer
cache.

Client-side

— On accessing data, cache it locally.
« What'’s a typical problem with caching?
— Consistency: cached data can become stale.

CSE 486/586, Spring 2014 13

(General) Caching Strategies

» Read-ahead (prefetch)
— Read strategy

— Anticipates read accesses and fetches the pages following
those that have most recently been read.

« Delayed-write
— Write strategy
— New writes stored locally.

— Periodically or when another client accesses, send back the
updates to the server

« Write-through

— Write strategy

— Writes go all the way to the server’s disk
« This is not an exhaustive list!

CSE 486/586, Spring 2014 14

NFS Client-Side Caching

« Write-through, but only at close()
— Not every single write
— Helps performance
« Other clients periodically check if there’s any new
write (next slide).
* Multiple writers
— No guarantee
— Could be any combination of writes
« Leads to inconsistency

CSE 486/586, Spring 2014 15

Validation

« A client checks with the server about cached blocks.
« Each block has a timestamp.

— If the remote block is new, then the client invalidates the
local cached block.

« Always invalidate after some period of time
— 3 seconds for files
— 30 seconds for directories

« Written blocks are marked as “dirty.”

CSE 486/586, Spring 2014 16

Failures

» Two design choices: stateful & stateless
« Stateful

— The server maintains all client information (which file, which
block of the file, the offset within the block, file lock, etc.)

— Good for the client-side process (just send requests!)

— Becomes almost like a local file system (e.g., locking is easy
to implement)

* Problem?
— Server crash - lose the client state
— Becomes complicated to deal with failures

CSE 486/586, Spring 2014 17

Failures

« Stateless

— Clients maintain their own information (which file, which
block of the file, the offset within the block, etc.)

— The server does not know anything about what a client
does.

— Each request contains complete information (file name,
offset, etc.)

— Easier to deal with server crashes (nothing to lose!)
* NFS’s choice
* Problem?

— Locking becomes difficult.

CSE 486/586, Spring 2014 18

(&%)

NFS

« Client-side caching for improved performance
« Write-through at close()
— Consistency issue
« Stateless server
— Easier to deal with failures
— Locking is not supported (later versions of NFS support
locking though)
« Simple design
— Led to simple implementation, acceptable performance,
easier maintenance, etc.

— Ultimately led to its popularity

CSE 486/586, Spring 2014 19

CSE 486/586 Administrivia

* Survey!

CSE 486/586, Spring 2014 20

New Trends in Distributed Storage

« Geo-replication: replication with multiple data centers
— Latency: serving nearby clients
— Fault-tolerance: disaster recovery
« Power efficiency: power-efficient storage
— Going green!
— Data centers consume lots of power

CSE 486/586, Spring 2014 21

Power Consumption

eBay: 16K servers, ~0.6 * 10"5 MWh, ~$3.7M
Akamai: 40K servers, ~1.7 * 10°5 MWh, ~$10M
Rackspace: 50K servers, ~2 * 10"5 MWh, ~$12M
Microsoft: > 200K servers, > 6 * 10°5 MWh, > $36M
Google: > 500K servers, > 6.3 * 10"5 MWh, > $38M
USA (2006): 10.9M servers, 610 * 10"5 MWh, $4.5B
Year-to-year: 1.7%~2.2% of total electricity use in US
http://ccr.sigcomm.org/online/files/p123.pdf

Question: can we reduce the energy footprint of a
distributed storage while preserving performance?

CSE 486/586, Spring 2014 22

Flash (Solid State Disk)

« Unlike magnetic disks, there’s no mechanical part

— Disks have motors that rotate disks & arms that move and
read.

« Efficient /0
— Less than 1 Watt consumption
— Magnetic disks over 10 Watt
» Fast random reads
—-<<1ms
— Up to 175 times faster than random reads on magnetic disks

CSE 486/586, Spring 2014 23

Flash (Solid State Disk)

« The smallest unit of operation (read/write) is a page
— Typically 4KB
— Initially all 1
— A write involves setting some bits to 0
— A write is fundamentally constrained.
« Individual bits cannot be reset to 1.
— Requires an erasure operation that resets all bits to 1.

— This erasure is done over a large block (e.g., 128KB), i.e.,
over multiple pages together.

— Typical latency: 1.5 ms
« Blocks wear out for each erasure.
— 100K cycles or 10K cycles depending on the technology.

CSE 486/586, Spring 2014 24

Flash (Solid State Disk)

« Early design limitations

— Slow write: a write to a random 4 KB page - the entire 128
KB erase block to be erased and rewritten > write
performance suffers

— Uneven wear: imbalanced writes result in uneven wear
across the device

* Any idea to solve this?

CSE 486/586, Spring 2014 25

Flash (Solid State Disk)

« Recent designs: log-based
« The disk exposes a logical structure of pages &
blocks (called Flash Translation Layer).
— Internally maintains remapping of blocks.

 For rewrite of a random 4KB page:

— Read the surrounding entire 128KB erasure block into the
disk’s internal buffer

— Update the 4KB page in the disk’s internal buffer

— Write the entire block to a new or previously erased physical
block

— Additionally, carefully choose this new physical block to
minimize uneven wear

CSE 486/586, Spring 2014 26

Flash (Solid State Disk)

« E.g. sequential write till block 2, then random read of

Summary

* NSF
— Caching with write-through policy at close()
— Stateless server
« One power efficient design: Flash storage

CSE 486/586, Spring 2014 28

a page in block 1 Py Read to
2) Update the
page
Write Write 3) Writetoa
Block 0 Block 0 different blocl
location
Write Write 4) Garbage
Block 1 Free collect the old|
block
Write Write N
> Block 2 Block 2
Block 1
Logical Structure Physical Structure
CSE 486/586, Spring 2014 27
Acknowledgements
« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).
CSE 486/586, Spring 2014 29

(@]

