
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Case Study: Facebook f4

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  Engineering principle

– Make the common case fast, and rare cases correct

•  Power law
•  Haystack

–  A design for warm photos
–  Problem observed from NFS: too many disk operations
– Mostly just one disk operation required for a photo
–  A large file used to contain many photos

2

CSE 486/586

f4: Breaking Down Even Further
•  Hot photos: CDN
•  Warm photos: Haystack
•  Very warm photos: f4
•  Why? Storage efficiency

3
Items sorted by popularity

Popularity

CSE 486/586

CDN / Haystack / f4
•  Storage efficiency became important.

–  Static contents (photos & videos) grew quickly.

•  Haystack is concerned about throughput, not
efficiently using storage space.

•  Very warm photos don’t quite need a lot of
throughput.

•  Design question: Can we design a system that is
more optimized for storage efficiency for very warm
photos?

4

CSE 486/586

CDN / Haystack / f4
•  CDN absorbs much traffic for hot photos/videos.
•  Haystack’s tradeoff: good throughput, but somewhat

inefficient storage space usage.
•  f4’s tradeoff: less throughput, but more storage

efficient.
–  ~ 1 month after upload, photos/videos are moved to f4.

5 CSE 486/586

Why Not Just Use Haystack?
•  Recall

– Haystack store maintains large files (many photos in one
file).

–  Each file is replicated 3 times, two in a single data center,
and one additional in a different data center.

•  Each file is placed in RAID disks.
– RAID: Redundant Array of Inexpensive Disks
– RAID provides better throughput with good reliability.
– Haystack uses RAID-6, where each file block requires 1.2X

space usage.
– With 3 replications, each file block spends 3.6X space usage

to tolerate 4 disk failures in a datacenter as well as 1
datacenter failure.

•  f4 reduces this to 2.1X space usage with the same
fault-tolerance guarantee.

6

C 2

CSE 486/586

The Rest
•  What RAID is and what it means for Haystack

– Will talk about RAID-0, RAID-1, RAID-4, and RAID-5
– Haystack’s replication based on RAID

•  How f4 uses erasure coding
–  f4 relies on erasure coding to improve on the storage

efficiency.
–  f4’s replication based on erasure coding

•  How Haystack and f4 stack up

7 CSE 486/586

RAID
•  Using multiple disks that appear as a one big disk in

a single server for throughput and reliability
•  Throughput

– Multiple disks working independently & in parallel

•  Reliability
– Multiple disks redundantly storing file blocks

•  Simplest? (RAID-0)

8

0

5

9

2

6

10

3

7

11

4

8

12

CSE 486/586

RAID-0
•  More often called striping
•  Better throughput

– Multiple blocks in a single stripe can be accessed in parallel
across different disks.

–  Better than a single large disk with the same size

•  Reliability?
– Not so much

•  Full capacity

9

0

4

8

1

5

9

2

6

10

3

7

11

CSE 486/586

RAID-1
•  More often called mirroring
•  Throughput

– Read from a single disk, write to two disks

•  Reliability
–  1 disk failure

•  Capacity
– Half

10

0

2

4

0

2

4

1

3

5

1

3

5

CSE 486/586

CSE 486/586 Administrivia
•  PA4 due 5/8

–  Please start now!

11 CSE 486/586

RAID-4
•  Striping with parity

–  Parity: conceptually, adding up all the bits
–  XOR bits, e.g., (0, 1, 1, 0) à P: 0
–  Almost the best of both striping and mirroring

•  Parity enables reconstruction after failures
–  (0, 1, 1, 0) à P: 0

•  How many failures?
– With one parity bit, one failure

12

0

4

8

1

5

9

2

6

10

3

7

11

P0

P1

P2

C 3

CSE 486/586

RAID-4
•  Read

– Can be done directly from a disk

•  Write
–  Parity update required with a new write
–  E.g., existing (0, 0, 0, 0), P:0 & writing 1 to the first disk
–  XOR of the old bit, the new bit, and the old parity bit
– One write == one old bit read + one old parity read + one

new bit write + one parity computation + one parity bit write

•  Reconstruction read
–  E.g., (0, X, 1, 0) à P: 0
–  XOR of all bits

•  Write to the failed disk
–  E.g., existing (X, 0, 0, 0), P:0 & writing 1 to the first disk
–  Parity update: XOR of all existing bits and the new bit

13 CSE 486/586

RAID-4
•  Throughput

–  Similar to striping for regular ops, except parity updates
–  After a disk failure: slower for reconstruction reads and

parity updates (need to read all disks)

•  Reliability
–  1 disk failure

•  Capacity
–  Parity disks needed

14

0

4

8

1

5

9

2

6

10

3

7

11

P0

P1

P2

CSE 486/586

RAID-5
•  Any issue with RAID-4?

–  All writes involve the parity disk
–  Any idea to solve this?

•  RAID-5
– Rotating parity
– Writes for different stripes involve different parity disks

15

0

5

10

1

6

11

2

7

P2

3

P1

8

P0

4

9

CSE 486/586

Back to Haystack & f4
•  Haystack uses RAID-6, which has 2 parity bits, with

12 disks.
–  Stripe: 10 data disks, 2 parity disks, failures tolerated: 2
–  (RAID-6 is much more complicated though.)
–  Each data block is replicated twice in a single datacenter,

and one additional is placed in a different datacenter.
•  Storage usage

–  Single block storage usage: 1.2X
–  3 replications: 3.6X

•  How to improve upon this storage usage?
– RAID parity disks are basically using error-correcting codes
– Other (potentially more efficient) error-correcting codes

exist, e.g., Hamming codes, Reed-Solomon codes, etc.
–  f4 does not use RAID, rather handles individual disks.
–  f4 uses more efficient Reed-Solomon code.

16

CSE 486/586

Back to Haystack & f4
•  (n, k) Reed-Solomon code

–  k data blocks, (n-k) parity blocks, n total blocks
– Can tolerate up to f==(n-k) block failures
– Need to go through coder/decoder for read/write, which

affects the throughput
– Upon a failure, any k blocks can reconstruct the lost block.

•  f4 reliability with a Reed-Solomon code
– Disk failure/host failure
– Rack failure
– Datacenter failure
–  Spread blocks across racks and across data centers

17

k data blocks f parity blocks

CSE 486/586

f4: Single Datacenter
•  Within a single data center, (14, 10) Reed-Solomon

code
–  This tolerates up to 4 block failures
–  1.4X storage usage per block

•  Distribute blocks across different racks
–  This tolerates two host/rack failures

18

C 4

CSE 486/586

f4: Cross-Datacenter
•  Additional parity block

– Can tolerate a single datacenter failure

•  Average space usage per block: 2.1X
–  E.g., average for block A & B: (1.4*2 + 1.4)/2 = 2.1

•  With 2.1X space usage,
–  4 host/rack failures tolerated
–  1 datacenter failure tolerated

19 CSE 486/586

Haystack vs. f4
•  Haystack

–  Per stripe: 10 data disks, 2 parity disks, 2 failures tolerated
– Replication degree within a datacenter: 2
–  4 total disk failures tolerated within a datacenter
– One additional copy in another datacenter (for tolerating one

datacenter failure)
–  Storage usage: 3.6X (1.2X for each copy)

•  f4
–  Per stripe: 10 data disks, 4 parity disks, 4 failures tolerated
– Reed-Solomon code achieves replication within a datacenter
– One additional copy XOR’ed to another datacenter,

tolerating one datacenter failure
–  Storage usage: 2.1X

20

CSE 486/586

Summary
•  Facebook photo storage

– CDN
– Haystack
–  f4

•  Haystack
– RAID-6 with 3.6X space usage

•  f4
– Reed-Solomon code
–  Block distribution across racks and datacenters
–  2.1X space usage

21

