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Recap 
•  Paxos phase 1 

–  A proposer sends a prepare message. 
–  Acceptors reply with the highest-numbered proposal 

•  Paxos phase 2: 
–  The proposer waits for a majority of acceptors. 
–  The proposer chooses the value from the highest-numbered 

proposal. 
– Upon receiving a new prooposal, acceptors either: 

»  Accept it 
»  Or, reject it if there was another prepare request with N’ higher 

than N, and it replied to it (due to the promise in phase 1). 
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Recall? 
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Socket API 

4 

socket() 

bind() 

listen() 

accept() 

read() 

write() 

Server 

block 

process 
request 

Client 

socket() 

connect() 

write() 

establish 

connection 

send request 

read() 

send response 

CSE 486/586 

What’s Wrong with Socket API? 
•  Low-level read/write 
•  Communication oriented 
•  Same sequence of calls, repeated many times 
•  Etc, etc… 
•  Not programmer friendly 
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Another Abstraction 
•  RPC (Remote Procedure Call) 

– Goal: it should appear that the programmer is calling a local 
function 

– Mechanism to enable function calls between different 
processes 

–  First proposed in the 80’s 

•  Examples 
–  Sun RPC 
–  Java RMI 
– CORBA 

•  Other examples that borrow the idea 
–  XML-RPC 
–  Android Bound Services with AIDL 
– Google Protocol Buffers 
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RPC 

•  Client 
int main (…) 
{ 
   … 
 rpc_call(…); 
 … 

} 

•  Server 
… 
 
void rpc_call(…) { 
 … 

} 
 
… 
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Local Procedure Call 
•  E.g., x = local_call(“str”); 
•  The compiler generates code to transfer necessary 

things to local_call 
–  Push the parameters to the stack 
– Call local_call 

•  The compiler also generates code to execute the 
local call. 

–  Assigns registers 
–  Adjust stack pointers 
–  Saves the return value 
– Calls the return instruction 
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Remote Procedure Call 
•  Give an illusion of doing a local call by using 

whatever the OS gives 
•  Closer to the programmers 

–  Language-level construct, not OS-level support 

•  What are some of the challenges? 
– How do you know that there are remote calls available? 
– How do you pass the parameters? 
– How do you find the correct server process? 
– How do you get the return value? 
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Stub, Marshalling, & Unmarshalling 
•  Stub functions: local interface to make it appear that 

the call is local. 
•  Marshalling: the act of taking a collection of data 

items (platform dependent) and assembling them into 
the external data representation (platform 
independent). 

•  Unmarshalling: the process of disassembling data 
that is in external data representation form, into a 
locally interpretable form. 
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RPC Process 
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CSE 486/586 Administrivia 
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How Do You Generate Stubs? 
•  Ever heard of C/C++, Java, Python syntax for RPC? 

– None! 

•  Language compilers don’t generate client and server 
stubs. 

•  Common solution: use a separate language and a 
pre-compiler 
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Interface Definition Language (IDL) 
•  Allow programmers to express remote procedures, 

e.g., names, parameters, and return values. 
•  Pre-compilers take this and generate stubs, 

marshalling/unmarshalling mechanisms. 
•  Similar to writing function definitions 
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Example: SUN XDR 
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const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

   version VERSION {

void WRITE(writeargs)=1;
Data READ(readargs)=2;

   }=2;

} = 9999;
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Stub Generation 
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How Do You Find the Server 
Process? 
•  Solution 1 

– Central DB (the first solution proposed) 

•  Solution 2 
–  Local DB with a well-known port (SUN RPC) 
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Local DB with Well-Known Port 
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How to Pass Parameters? 
•  Pass by value: no problem 

–  Just copy the value 

•  What about pointers/references? 
– Need to copy the actual data as well 
– Marshall them at the client and unmarshall them at the 

server 
–  Pass the local pointers/references 

•  What about complex data structures? struct, class, 
etc. 

– Need to have a platform independent way of representing 
data 
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External Data Representation 
•  Communication between two heterogeneous 

machines 
– Different byte ordering (big-endian & little-endian) 
– Different sizes of integers and other types 
– Different floating point representations 
– Different character sets 
–  Alignment requirements 

•  Used in general contexts, not just in RPCs 
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Example: Google Protocol Buffers 
•  Goal: language- and platform-neutral way to specify 

and serialize data 
•  Provides syntax & pre-compiler (open-source) 

–  Pre-compiler generates code to manipulate objects for a 
specific language, e.g, C++, Java, Python. 

–  The runtime support applies a fast & sloppy compression 
algorithm. 

 
message Book { 

 required string title = 1; 
 repeated string author = 2; 
 optional BookStats statistics = 3; 
 message BookStats { 
  required int32 sales =1; 
 } 

} 
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What About Failures? 
•  Local calls do not fail. 
•  Remote calls might fail. 
•  Programmers should deal with this. 

– No transparency here 
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Failure Modes of RPC 
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Invocation Semantics 
•  Local procedure call: exactly-once 
•  Remote procedure call: 

–  0 times: server crashed or server process died before 
executing server code 

–  1 time: everything worked well, as expected 
–  1 or more: excess latency or lost reply from server and client 

retransmission 

•  When do these make sense? 
–  Idempotent functions: OK to run any number of times 
– Non-idempotent functions: cannot do it 

•  What we can offer 
–  At least once 
–  At most once 
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Invocation Semantics 
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Remote Method Invocation (RMI) 
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Summary  
•  RPC enables programmers to call functions in 

remote processes. 
•  IDL (Interface Definition Language) allows 

programmers to define remote procedure calls. 
•  Stubs are used to make it appear that the call is 

local. 
•  Semantics 

– Cannot provide exactly once  
–  At least once 
–  At most once 
– Depends on the application requirements 
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