
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Remote Procedure Call

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  Paxos phase 1

–  A proposer sends a prepare message.
–  Acceptors reply with the highest-numbered proposal

•  Paxos phase 2:
–  The proposer waits for a majority of acceptors.
–  The proposer chooses the value from the highest-numbered

proposal.
– Upon receiving a new prooposal, acceptors either:

»  Accept it
»  Or, reject it if there was another prepare request with N’ higher

than N, and it replied to it (due to the promise in phase 1).

2

CSE 486/586

Recall?

3

TCP UDP

IP

Device Drivers

Network Interface

OS

App

Socket API

CSE 486/586

Socket API

4

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

establish

connection

send request

read()

send response

CSE 486/586

What’s Wrong with Socket API?
•  Low-level read/write
•  Communication oriented
•  Same sequence of calls, repeated many times
•  Etc, etc…
•  Not programmer friendly

5 CSE 486/586

Another Abstraction
•  RPC (Remote Procedure Call)

– Goal: it should appear that the programmer is calling a local
function

– Mechanism to enable function calls between different
processes

–  First proposed in the 80’s

•  Examples
–  Sun RPC
–  Java RMI
– CORBA

•  Other examples that borrow the idea
–  XML-RPC
–  Android Bound Services with AIDL
– Google Protocol Buffers

6

C 2

CSE 486/586

RPC

•  Client
int main (…)
{
 …
 rpc_call(…);
 …

}

•  Server
…

void rpc_call(…) {
 …

}

…

7 CSE 486/586

Local Procedure Call
•  E.g., x = local_call(“str”);
•  The compiler generates code to transfer necessary

things to local_call
–  Push the parameters to the stack
– Call local_call

•  The compiler also generates code to execute the
local call.

–  Assigns registers
–  Adjust stack pointers
–  Saves the return value
– Calls the return instruction

8

CSE 486/586

Remote Procedure Call
•  Give an illusion of doing a local call by using

whatever the OS gives
•  Closer to the programmers

–  Language-level construct, not OS-level support

•  What are some of the challenges?
– How do you know that there are remote calls available?
– How do you pass the parameters?
– How do you find the correct server process?
– How do you get the return value?

9 CSE 486/586

Stub, Marshalling, & Unmarshalling
•  Stub functions: local interface to make it appear that

the call is local.
•  Marshalling: the act of taking a collection of data

items (platform dependent) and assembling them into
the external data representation (platform
independent).

•  Unmarshalling: the process of disassembling data
that is in external data representation form, into a
locally interpretable form.

10

CSE 486/586

RPC Process

11

Client Process

Client Function

Client Stub

Socket API

Server Process

Server Function

Server Stub

Socket API

Marshalling/unmarshalling

CSE 486/586

CSE 486/586 Administrivia

12

C 3

CSE 486/586

How Do You Generate Stubs?
•  Ever heard of C/C++, Java, Python syntax for RPC?

– None!

•  Language compilers don’t generate client and server
stubs.

•  Common solution: use a separate language and a
pre-compiler

13 CSE 486/586

Interface Definition Language (IDL)
•  Allow programmers to express remote procedures,

e.g., names, parameters, and return values.
•  Pre-compilers take this and generate stubs,

marshalling/unmarshalling mechanisms.
•  Similar to writing function definitions

14

CSE 486/586

Example: SUN XDR

15

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

 version VERSION {

void WRITE(writeargs)=1;
Data READ(readargs)=2;

 }=2;

} = 9999;

CSE 486/586

Stub Generation

16

Interface
Specification

Stub
Generator

Server

Stub

Common

Header

Client

Stub
Client

Source

RPC
LIBRARY

Server

Source

Compiler / Linker

RPC
LIBRARY

Client

Program

Server

Program

Compiler / Linker

e.g., in SUN XDR e.g., rpcgen

gcc

.o, .exe

.o, .exe

.c

.c

.c

.c

.h

gcc

CSE 486/586

How Do You Find the Server
Process?
•  Solution 1

– Central DB (the first solution proposed)

•  Solution 2
–  Local DB with a well-known port (SUN RPC)

17 CSE 486/586

Local DB with Well-Known Port

18

Client

Program

Server

procedure Server

Stub

Client

Stub

Network
Code

Port Mapper
SERVER

CLIENT
Finding An RPC:
RPCs live on specific hosts at
specific ports.

Port mapper on the host maps
from RPC name to port#

When a server process is
initialized, it registers its RPCs
(handle) with the port mapper
on the server

A client first connects to port
mapper (daemon on standard
port) to get this handle

The call to RPC is then made
by connecting to the
corresponding port

C 4

CSE 486/586

How to Pass Parameters?
•  Pass by value: no problem

–  Just copy the value

•  What about pointers/references?
– Need to copy the actual data as well
– Marshall them at the client and unmarshall them at the

server
–  Pass the local pointers/references

•  What about complex data structures? struct, class,
etc.

– Need to have a platform independent way of representing
data

19 CSE 486/586

External Data Representation
•  Communication between two heterogeneous

machines
– Different byte ordering (big-endian & little-endian)
– Different sizes of integers and other types
– Different floating point representations
– Different character sets
–  Alignment requirements

•  Used in general contexts, not just in RPCs

20

CSE 486/586

Example: Google Protocol Buffers
•  Goal: language- and platform-neutral way to specify

and serialize data
•  Provides syntax & pre-compiler (open-source)

–  Pre-compiler generates code to manipulate objects for a
specific language, e.g, C++, Java, Python.

–  The runtime support applies a fast & sloppy compression
algorithm.

message Book {

 required string title = 1;
 repeated string author = 2;
 optional BookStats statistics = 3;
 message BookStats {
 required int32 sales =1;
 }

}
21 CSE 486/586

What About Failures?
•  Local calls do not fail.
•  Remote calls might fail.
•  Programmers should deal with this.

– No transparency here

22

CSE 486/586

Failure Modes of RPC

Execute

Reply

correct
function

Execute,

Crash

Request

Crash

Request

Request

Execute

Reply

Execute

Reply

crash
before
reply

crash
before
execution

lost
request

Channel
fails
during
reply

Client
machine
fails
before
receiving
reply

23 CSE 486/586

Invocation Semantics
•  Local procedure call: exactly-once
•  Remote procedure call:

–  0 times: server crashed or server process died before
executing server code

–  1 time: everything worked well, as expected
–  1 or more: excess latency or lost reply from server and client

retransmission

•  When do these make sense?
–  Idempotent functions: OK to run any number of times
– Non-idempotent functions: cannot do it

•  What we can offer
–  At least once
–  At most once

24

C 5

CSE 486/586

Invocation Semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit old reply At-most-once

At-least-once

Maybe

25 CSE 486/586

Remote Method Invocation (RMI)

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B's class
& dispatcher

remote
client server

Process P1 (“client”) Process P2 (“server”)

26

CSE 486/586

Summary
•  RPC enables programmers to call functions in

remote processes.
•  IDL (Interface Definition Language) allows

programmers to define remote procedure calls.
•  Stubs are used to make it appear that the call is

local.
•  Semantics

– Cannot provide exactly once
–  At least once
–  At most once
– Depends on the application requirements

27 CSE 486/586 28

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

