
C 1 

CSE 486/586 

CSE 486/586 Distributed Systems 
Data Analytics 

Steve Ko 
Computer Sciences and Engineering 

University at Buffalo 
 
 
 

CSE 486/586 

Recap 
•  RPC enables programmers to call functions in 

remote processes. 
•  IDL (Interface Definition Language) allows 

programmers to define remote procedure calls. 
•  Stubs are used to make it appear that the call is 

local. 
•  Semantics 

– Cannot provide exactly once  
–  At least once 
–  At most once 
– Depends on the application requirements 
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Two Questions We’ll Answer 

•  What is data analytics? 
•  What are the programming paradigms for it? 
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Example 1: Scientific Data 
•  CERN (European Organization for Nuclear 

Research) @ Geneva: Large Hadron Collider (LHC) 
Experiment 

–  300 GB of data per second 
–  “15 petabytes (15 million gigabytes) of data annually – 

enough to fill more than 1.7 million dual-layer DVDs a year” 
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Example 2: Web Data 

•  Google 
–  20+ billion web pages 

»  ~20KB each = 400 TB 
–  ~ 4 months to read the web 
–  And growing… 

»  1999 vs. 2009: ~ 100X 

•  Yahoo! 
– US Library of Congress every day (20TB/day) 
–  2 billion photos 
–  2 billion mail + messenger sent per day 
–  And growing… 
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Data Analytics 
•  Computations on very large data sets 

– How large? TBs to PBs 
– Much time is spent on data moving/reading/writing 

•  Shift of focus 
– Used to be: computation (think supercomputers) 
– Now: data 
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Popular Environment 
•  Environment for storing TBs ~ PBs of data 
•  Cluster of cheap commodity PCs 

–  As we have been discussing in class… 
–  1000s of servers 
– Data stored as plain files on file systems 
– Data scattered over the servers 
–  Failure is the norm 

•  How do you process all this data? 
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Turn to History 
•  Dataflow programming 

– Data sources and operations 
– Data items go through a series of transformations using 

operations. 
–  Very popular concept 

•  Many examples 
–  Even CPU designs back in 80’s and 90’s 
–  SQL, data streaming, etc. 

•  Challenges 
– How to efficiently fetch data? 
– When and how to schedule different operations? 
– What if there’s a failure (both for data and computation)? 
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Dataflow Programming 
•  This style of programming is now very popular with 

large clusters. 
•  Many examples 

– MapReduce, Pig, Hive, Dryad, Spark, etc. 

•  Two examples we’ll look at 
– MapReduce and Pig 
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What is MapReduce? 
•  A system for processing large amounts of data 
•  Introduced by Google in 2004 
•  Inspired by map & reduce in Lisp 
•  OpenSource implementation: Hadoop by Yahoo! 
•  Used by many, many companies 

–  A9.com, AOL, Facebook, The New York Times, Last.fm, 
Baidu.com, Joost, Veoh, etc. 
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Background: Map & Reduce in Lisp 
•  Sum of squares of a list (in Lisp) 
•  (map square ‘(1 2 3 4)) 

–  Output: (1 4 9 16) 
[processes each record individually] 
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Background: Map & Reduce in Lisp 
•  Sum of squares of a list (in Lisp) 
•  (reduce + ‘(1 4 9 16)) 

–  (+ 16 (+ 9 (+ 4 1) ) ) 
–  Output: 30 
[processes set of all records in a batch] 
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Background: Map & Reduce in Lisp 

•  Map 
–  processes each record individually 

•  Reduce 
–  processes (combines) set of all records in a batch 
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What Google People Have Noticed 
•  Keyword search 

–  Find a keyword in each web page individually, and if it is 
found, return the URL of the web page 

– Combine all results (URLs) and return it 

•  Count of the # of occurrences of each word 
– Count the # of occurrences in each web page individually, 

and return the list of <word, #> 
–  For each word, sum up (combine) the count 

•  Notice the similarities? 
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What Google People Have Noticed 
•  Lots of storage + compute cycles nearby 
•  Opportunity 

–  Files are distributed already! (GFS) 
–  A machine can processes its own web pages (map) 
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Google MapReduce 

•  Took the concept from Lisp, and applied to large-scale 
data-processing 

•  Takes two functions from a programmer (map and 
reduce), and performs three steps 

•  Map 
– Runs map for each file individually in parallel 

•  Shuffle 
– Collects the output from all map executions 
–  Transforms the map output into the reduce input 
– Divides the map output into chunks 

•  Reduce 
– Runs reduce (using a map output chunk as the input) in parallel 
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Programmer’s Point of View 
•  Programmer writes two functions – map() and 

reduce() 
•  The programming interface is fixed 

– map (in_key, in_value) -> 
         list of (out_key, intermediate_value) 

–  reduce (out_key, list of intermediate_value) -> 
   (out_key, out_value) 

•  Caution: not exactly the same as Lisp 
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Inverted Indexing Example 
•  Word -> list of web pages containing the word 
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every -> 

      http://m-w.com/… 

      http://answers.…. 

      … 

its -> 

      http://itsa.org/…. 

      http://youtube… 

      … 
Input: web pages Output: word-> urls 
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Map 
•  Interface 

–  Input: <in_key, in_value> pair => <url, content> 
– Output: list of intermediate <key, value> pairs  

=> list of <word, url> 
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key = http://url0.com 

value = “every happy family is 
alike.” 

<every, http://url0.com> 

<happy, http://url0.com> 

<family, http://url0.com> 

… map() 

Map Input: <url, content> 

<every, http://url1.com> 

<unhappy, http://url1.com> 

<family, http://url1.com> 

… 

key = http://url1.com 

value = “every unhappy family is 
unhappy in its own way.” 

Map Output: list of <word, url> 
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Shuffle 
•  MapReduce system 

– Collects outputs from all map executions 
– Groups all intermediate values by the same key 
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every -> http://url0.com 

 http://url1.com 
<every, http://url0.com> 

<happy, http://url0.com> 

<family, http://url0.com> 

… 
<every, http://url1.com> 

<unhappy, http://url1.com> 

<family, http://url1.com> 

… 

Map Output: list of <word, 
url> 

Reduce Input: <word, list of 
urls> 

happy -> http://url0.com 

unhappy -> http://url1.com 

family -> http://url0.com 

 http://url1.com 
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Reduce 
•  Interface 

–  Input: <out_key, list of intermediate_value> 
– Output: <out_key, out_value> 
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every -> http://url0.com 

 http://url1.com 

Reduce Input: <word, list of 
urls> 

happy -> http://url0.com 

unhappy -> http://url1.com 

family -> http://url0.com 

 http://url1.com 

<every, “http://url0.com, 

http://url1.com”> 
<happy,  

“http://url0.com”> 
<unhappy,  

“http://url1.com”> 

<family, “http://url0.com, 

 http://url1.com”> 

Reduce Output: <word, string of 
urls> 

reduce() 
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Execution Overview 
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Map phase 

Shuffle phase 

Reduce 
phase 
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Implementing MapReduce 
•  Externally for user 

– Write a map function, and a reduce function 
–  Submit a job; wait for result 
– No need to know anything about the environment (Google: 

4000 servers + 48000 disks, many failures) 
•  Internally for MapReduce system designer 

– Run map in parallel 
–  Shuffle: combine map results to produce reduce input 
– Run reduce in parallel 
– Deal with failures 
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Execution Overview 
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Task Assignment 
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Master	

Map workers	
Reduce workers	

M 
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R 

R 

Worker pull 
1.  Worker signals idle 
2.  Master assigns task 
3.  Task retrieves data 
4.  Task executes 

Output	Input Splits	
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Fault-tolerance: Re-execution 
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Machines Share Roles 
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Master	

•  So far, logical view of cluster 
•  In reality 

–  Each cluster machine 
stores data 

–  And runs MapReduce workers 

•  Lots of storage + compute 
cycles nearby 
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Problems of MapReduce 
•  Any you can think of? 

–  There’s only two functions you can work with (not expressive 
enough sometimes.) 

–  Functional-style (a barrier for some people) 

•  Turing completeness (or computationally universal) 
–  If it can simulate a single-taped Turing machine. 
– Most general languages (C/C++, Java, Lisp, etc.) are. 
–  SQL is. 
– MapReduce is not. 
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Pig 
•  Why Pig? 

– MapReduce has limitations: only two functions 
– Many tasks require more than one MapReduce 
–  Functional thinking: barrier for some 

•  Pig 
– Defines a set of high-level simple “commands” 
– Compiles the commands and generates multiple 

MapReduce jobs 
– Runs them in parallel 
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Pig Example 
load ‘/data/visits’; 
group visits by url; 
foreach gVisits generate url, count(visits); 
 
load ‘/data/urlInfo’; 
join visitCounts by url, urlInfo by url; 
 
group visitCounts by category; 
foreach gCategories generate top(visitCounts,10); 

30 



C 6 

CSE 486/586 

Pig Example 
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Load Visits 

Group by url 

Foreach url 
generate count 

Load Url Info 

Join on url 

Group by 
category 

Foreach category 
generate top10(urls) 

Reduce1	  
Map2	  

Reduce2	  
Map3	  

Reduce3	  

Map1	  
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Summary 
•  Data analytics shifts the focus from computation to 

data. 
•  Many programming paradigms are emerging. 

– MapReduce 
–  Pig 
– Many others 
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More Details 
•  Papers 

–  J. Dean and S. Ghemawat, “MapReduce: Simplified Data 
Processing on Large Clusters,” OSDI 2004 

–  C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, 
“Pig Latin: A Not-So-Foreign Language For Data Processing,” 
SIGMOD 2008 

•  URLs 
–  http://hadoop.apache.org/core/ 
–  http://wiki.apache.org/hadoop/ 
–  http://hadoop.apache.org/pig/ 
–  http://wiki.apache.org/pig/ 

•  Slides 
–  http://labs.google.com/papers/mapreduce-osdi04-slides/

index.html 
–  http://www.systems.ethz.ch/education/past-courses/hs08/map-

reduce/slides/intro.pdf 
–  http://www.cs.uiuc.edu/class/sp09/cs525/L4tmp.B.ppt 
–  http://infolab.stanford.edu/~usriv/talks/sigmod08-pig-latin.ppt 
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