
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Data Analytics

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  RPC enables programmers to call functions in

remote processes.
•  IDL (Interface Definition Language) allows

programmers to define remote procedure calls.
•  Stubs are used to make it appear that the call is

local.
•  Semantics

– Cannot provide exactly once
–  At least once
–  At most once
– Depends on the application requirements

2

CSE 486/586

Two Questions We’ll Answer

•  What is data analytics?
•  What are the programming paradigms for it?

3 CSE 486/586

Example 1: Scientific Data
•  CERN (European Organization for Nuclear

Research) @ Geneva: Large Hadron Collider (LHC)
Experiment

–  300 GB of data per second
–  “15 petabytes (15 million gigabytes) of data annually –

enough to fill more than 1.7 million dual-layer DVDs a year”

4

CSE 486/586

Example 2: Web Data

•  Google
–  20+ billion web pages

»  ~20KB each = 400 TB
–  ~ 4 months to read the web
–  And growing…

»  1999 vs. 2009: ~ 100X

•  Yahoo!
– US Library of Congress every day (20TB/day)
–  2 billion photos
–  2 billion mail + messenger sent per day
–  And growing…

5 CSE 486/586

Data Analytics
•  Computations on very large data sets

– How large? TBs to PBs
– Much time is spent on data moving/reading/writing

•  Shift of focus
– Used to be: computation (think supercomputers)
– Now: data

6

C 2

CSE 486/586

Popular Environment
•  Environment for storing TBs ~ PBs of data
•  Cluster of cheap commodity PCs

–  As we have been discussing in class…
–  1000s of servers
– Data stored as plain files on file systems
– Data scattered over the servers
–  Failure is the norm

•  How do you process all this data?

7 CSE 486/586

Turn to History
•  Dataflow programming

– Data sources and operations
– Data items go through a series of transformations using

operations.
–  Very popular concept

•  Many examples
–  Even CPU designs back in 80’s and 90’s
–  SQL, data streaming, etc.

•  Challenges
– How to efficiently fetch data?
– When and how to schedule different operations?
– What if there’s a failure (both for data and computation)?

8

0 1

+ 2

*

CSE 486/586

Dataflow Programming
•  This style of programming is now very popular with

large clusters.
•  Many examples

– MapReduce, Pig, Hive, Dryad, Spark, etc.

•  Two examples we’ll look at
– MapReduce and Pig

9 CSE 486/586

What is MapReduce?
•  A system for processing large amounts of data
•  Introduced by Google in 2004
•  Inspired by map & reduce in Lisp
•  OpenSource implementation: Hadoop by Yahoo!
•  Used by many, many companies

–  A9.com, AOL, Facebook, The New York Times, Last.fm,
Baidu.com, Joost, Veoh, etc.

10

CSE 486/586

Background: Map & Reduce in Lisp
•  Sum of squares of a list (in Lisp)
•  (map square ‘(1 2 3 4))

–  Output: (1 4 9 16)
[processes each record individually]

11

4

4 9 16

f f f

3 2

1

f

1

CSE 486/586

Background: Map & Reduce in Lisp
•  Sum of squares of a list (in Lisp)
•  (reduce + ‘(1 4 9 16))

–  (+ 16 (+ 9 (+ 4 1)))
–  Output: 30
[processes set of all records in a batch]

12

16

5 14 30

f f f

9 4

1 initial

returned

C 3

CSE 486/586

Background: Map & Reduce in Lisp

•  Map
–  processes each record individually

•  Reduce
–  processes (combines) set of all records in a batch

13 CSE 486/586

What Google People Have Noticed
•  Keyword search

–  Find a keyword in each web page individually, and if it is
found, return the URL of the web page

– Combine all results (URLs) and return it

•  Count of the # of occurrences of each word
– Count the # of occurrences in each web page individually,

and return the list of <word, #>
–  For each word, sum up (combine) the count

•  Notice the similarities?

14

Map

Reduce

Map

Reduce

CSE 486/586

What Google People Have Noticed
•  Lots of storage + compute cycles nearby
•  Opportunity

–  Files are distributed already! (GFS)
–  A machine can processes its own web pages (map)

15

CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	

CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	CP

U	CP
U	

CSE 486/586

Google MapReduce

•  Took the concept from Lisp, and applied to large-scale
data-processing

•  Takes two functions from a programmer (map and
reduce), and performs three steps

•  Map
– Runs map for each file individually in parallel

•  Shuffle
– Collects the output from all map executions
–  Transforms the map output into the reduce input
– Divides the map output into chunks

•  Reduce
– Runs reduce (using a map output chunk as the input) in parallel

16

CSE 486/586

Programmer’s Point of View
•  Programmer writes two functions – map() and

reduce()
•  The programming interface is fixed

– map (in_key, in_value) ->
 list of (out_key, intermediate_value)

–  reduce (out_key, list of intermediate_value) ->
 (out_key, out_value)

•  Caution: not exactly the same as Lisp

17 CSE 486/586

Inverted Indexing Example
•  Word -> list of web pages containing the word

18

every ->

 http://m-w.com/…

 http://answers.….

 …

its ->

 http://itsa.org/….

 http://youtube…

 …
Input: web pages Output: word-> urls

C 4

CSE 486/586

Map
•  Interface

–  Input: <in_key, in_value> pair => <url, content>
– Output: list of intermediate <key, value> pairs

=> list of <word, url>

19

key = http://url0.com

value = “every happy family is
alike.”

<every, http://url0.com>

<happy, http://url0.com>

<family, http://url0.com>

… map()

Map Input: <url, content>

<every, http://url1.com>

<unhappy, http://url1.com>

<family, http://url1.com>

…

key = http://url1.com

value = “every unhappy family is
unhappy in its own way.”

Map Output: list of <word, url>

CSE 486/586

Shuffle
•  MapReduce system

– Collects outputs from all map executions
– Groups all intermediate values by the same key

20

every -> http://url0.com

 http://url1.com
<every, http://url0.com>

<happy, http://url0.com>

<family, http://url0.com>

…
<every, http://url1.com>

<unhappy, http://url1.com>

<family, http://url1.com>

…

Map Output: list of <word,
url>

Reduce Input: <word, list of
urls>

happy -> http://url0.com

unhappy -> http://url1.com

family -> http://url0.com

 http://url1.com

CSE 486/586

Reduce
•  Interface

–  Input: <out_key, list of intermediate_value>
– Output: <out_key, out_value>

21

every -> http://url0.com

 http://url1.com

Reduce Input: <word, list of
urls>

happy -> http://url0.com

unhappy -> http://url1.com

family -> http://url0.com

 http://url1.com

<every, “http://url0.com,

http://url1.com”>
<happy,

“http://url0.com”>
<unhappy,

“http://url1.com”>

<family, “http://url0.com,

 http://url1.com”>

Reduce Output: <word, string of
urls>

reduce()

CSE 486/586

Execution Overview

22

Map phase

Shuffle phase

Reduce
phase

CSE 486/586

Implementing MapReduce
•  Externally for user

– Write a map function, and a reduce function
–  Submit a job; wait for result
– No need to know anything about the environment (Google:

4000 servers + 48000 disks, many failures)
•  Internally for MapReduce system designer

– Run map in parallel
–  Shuffle: combine map results to produce reduce input
– Run reduce in parallel
– Deal with failures

23 CSE 486/586

Execution Overview

24

Master	

Input Files	 Output	

Map workers	
Reduce workers	

M

M

M

R

R

Input files sent to
map tasks Intermediate

keys partitioned
into reduce tasks

C 5

CSE 486/586

Task Assignment

25

Master	

Map workers	
Reduce workers	

M

M

M

R

R

Worker pull
1.  Worker signals idle
2.  Master assigns task
3.  Task retrieves data
4.  Task executes

Output	Input Splits	

CSE 486/586

Fault-tolerance: Re-execution

26

1

1

Master	

Map workers	
Reduce workers	

M

M

M

R

R

Re-execute on failure

Input Splits	 Output	

CSE 486/586

Machines Share Roles

27

Master	

•  So far, logical view of cluster
•  In reality

–  Each cluster machine
stores data

–  And runs MapReduce workers

•  Lots of storage + compute
cycles nearby

M

R

M

R

M

R

M

R

M

R

M

R

CSE 486/586

Problems of MapReduce
•  Any you can think of?

–  There’s only two functions you can work with (not expressive
enough sometimes.)

–  Functional-style (a barrier for some people)

•  Turing completeness (or computationally universal)
–  If it can simulate a single-taped Turing machine.
– Most general languages (C/C++, Java, Lisp, etc.) are.
–  SQL is.
– MapReduce is not.

28

CSE 486/586

Pig
•  Why Pig?

– MapReduce has limitations: only two functions
– Many tasks require more than one MapReduce
–  Functional thinking: barrier for some

•  Pig
– Defines a set of high-level simple “commands”
– Compiles the commands and generates multiple

MapReduce jobs
– Runs them in parallel

29 CSE 486/586

Pig Example
load ‘/data/visits’;
group visits by url;
foreach gVisits generate url, count(visits);

load ‘/data/urlInfo’;
join visitCounts by url, urlInfo by url;

group visitCounts by category;
foreach gCategories generate top(visitCounts,10);

30

C 6

CSE 486/586

Pig Example

31

Load Visits

Group by url

Foreach url
generate count

Load Url Info

Join on url

Group by
category

Foreach category
generate top10(urls)

Reduce1	
Map2	

Reduce2	
Map3	

Reduce3	

Map1	

CSE 486/586

Summary
•  Data analytics shifts the focus from computation to

data.
•  Many programming paradigms are emerging.

– MapReduce
–  Pig
– Many others

32

CSE 486/586

More Details
•  Papers

–  J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” OSDI 2004

–  C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig Latin: A Not-So-Foreign Language For Data Processing,”
SIGMOD 2008

•  URLs
–  http://hadoop.apache.org/core/
–  http://wiki.apache.org/hadoop/
–  http://hadoop.apache.org/pig/
–  http://wiki.apache.org/pig/

•  Slides
–  http://labs.google.com/papers/mapreduce-osdi04-slides/

index.html
–  http://www.systems.ethz.ch/education/past-courses/hs08/map-

reduce/slides/intro.pdf
–  http://www.cs.uiuc.edu/class/sp09/cs525/L4tmp.B.ppt
–  http://infolab.stanford.edu/~usriv/talks/sigmod08-pig-latin.ppt

33 CSE 486/586 34

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

