
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Security --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Security Threats
•  Leakage: An unauthorized party gains access to a

service or data.
•  Attacker obtains knowledge of a withdrawal or account

balance

•  Tampering: Unauthorized change of data, tampering
with a service

•  Attacker changes the variable holding your personal
checking $$ total

•  Vandalism: Interference with proper operation,
without gain to the attacker

•  Attacker does not allow any transactions to your account

2

CSE 486/586

Security Properties
•  Confidentiality: Concealment of information or

resources
•  Authenticity: Identification and assurance of origin of

info
•  Integrity: Trustworthiness of data or resources in

terms of preventing improper and unauthorized
changes

•  Availability: Ability to use desired info or resource
•  Non-repudiation: Offer of evidence that a party

indeed is sender or a receiver of certain information
•  Access control: Facilities to determine and enforce

who is allowed access to what resources (host,
software, network, …)

3 CSE 486/586

Attack on Confidentiality
•  Eavesdropping

– Unauthorized access to information
–  Packet sniffers and wiretappers (e.g. tcpdump)
–  Illicit copying of files and programs

4

A B

Eavesdropper

CSE 486/586

Attack on Integrity
•  Tampering

–  Stop the flow of the message
– Delay and optionally modify the message
– Release the message again

5

A B

Perpetrator

CSE 486/586

Attack on Authenticity
•  Fabrication

– Unauthorized assumption of other’s identity
– Generate and distribute objects under identity

6

A B

Masquerader: from A

C 2

CSE 486/586

Attack on Availability
•  Destroy hardware (cutting fiber) or software
•  Modify software in a subtle way

•  Corrupt packets in transit

•  Blatant denial of service (DoS):
– Crashing the server
– Overwhelm the server (use up its resource)

7

A B

CSE 486/586

Designing Secure Systems
•  Your system is only as secure as your weakest

component!
•  Need to make worst-case assumptions about

attackers:
–  exposed interfaces, insecure networks, algorithms and

program code available to attackers, attackers may be
computationally very powerful

–  Tradeoff between security and performance impact/difficulty
–  Typically design system to withstand a known set of attacks

(Attack Model or Attacker Model)

•  It is not easy to design a secure system.
•  And it’s an arms race!

8

CSE 486/586

CSE 486/586 Administrivia
•  PA4 is due Friday next week.

9 CSE 486/586

Cryptography
•  Comes from Greek word meaning “secret”

–  Primitives also can provide integrity, authentication
•  Cryptographers invent secret codes to attempt to

hide messages from unauthorized observers

•  Modern encryption:

–  Algorithm public, key secret and provides security
– May be symmetric (secret) or asymmetric (public)

•  Cryptographic algorithms goal
– Given key, relatively easy to compute
– Without key, hard to compute (invert)
–  “Level” of security often based on “length” of key

10

plaintext ciphertext plaintext
encryption decryption

CSE 486/586

Three Types of Functions
•  Cryptographic hash Functions

–  Zero keys

•  Secret-key functions
– One key

•  Public-key functions
–  Two keys

11 CSE 486/586

Cryptographic Hash Functions
•  Take message, m, of arbitrary length and produces a

smaller (short) number, h(m)
•  Properties

–  Easy to compute h(m)
–  Pre-image resistance (strong collision): Hard to find an m,

given h(m)
»  “One-way function”

–  Second pre-image resistance (weak collision): Hard to find
two values that hash to the same h(m)

»  E.g. discover collision: h(m) == h(m’) for m != m’
– Often assumed: output of hash fn’s “looks” random

•  What’s wrong with collisions?
–  E.g., message authentication (MAC) (will discuss later).

12

C 3

CSE 486/586

How Hard to Find Collisions?
•  Think like an attacker. What would be the simplest

strategy to try?
–  Brute-force trials.
–  Then the question is how many trials do we need?
–  The “strength” of your crypto hash depends on how hard it is

to find out collisions.
•  Birthday paradox

–  In a set of n random people, what’s the probability of two
people having the same birthday?

•  What’s the similarity between this and the crypto
hash collision?

•  Calculation
– Compute probability of different birthdays
– Random sample of n people taken from k=365 days

13 CSE 486/586

Birthday Paradox
•  Probability of no repetition:

–  P = 1 – (1) (1 - 1/365) (1 – 2/365) (1 – 3/365) … (1 – (n-1)/
365)

–  (k = # of slots, e.g., 365) P ≈ 1 – e-(n(n-1)/2k

–  For p, it takes roughly sqrt(2k * ln(1/(1-p))) people to find two
people with the same birthday.

•  With p = 50%,

14

CSE 486/586

How Many Bits for Hash?
•  If m bits, how many numbers do we need to find

(weak) collision?
–  It’s not 2m + 1!
–  It takes 2m/2 to find weak collision (with high probability)
–  Still takes 2m to find strong (pre-image) collision

•  64 bits, takes 232 messages to search
•  MD5 (128 bits) considered too little
•  SHA-1 (160 bits) getting old

15 CSE 486/586

Example: Password
•  Password hashing

– Can’t store passwords in a file that could be read
– Concerned with insider attacks!

•  Must compare typed passwords to stored passwords
– Does hash (typed) === hash (password)?

•  Actually, a salt is often used: hash (input || salt)
–  Avoids precomputation of all possible hashes in “rainbow

tables” (available for download from file-sharing systems)

16

CSE 486/586

Symmetric (Secret) Key Crypto
•  Also: “conventional / private-key / single-key”

–  Sender and recipient share a common key
–  All classical encryption algorithms are private-key
– Dual use: confidentiality (encryption) or authentication/

integrity (message authentication code)
•  Was only type of encryption prior to invention of

public-key in 1970’s
– Most widely used
– More computationally efficient than “public key”

17 CSE 486/586

Symmetric Cipher Model

18

C 4

CSE 486/586

Requirements
•  Two requirements

–  Strong encryption algorithm
–  Secret key known only to sender/receiver

•  Goal: Given key, generate 1-to-1 mapping to
ciphertext that looks random if key unknown

–  Assume algorithm is known (no security by obscurity)
–  Implies secure channel to distribute key

19 CSE 486/586

Uses
•  Encryption

–  For confidentiality
–  Sender: Compute C = AESK(M) & Send C
– Receiver: Recover M = AES’K(C)

•  Message Authentication Code (MAC)
–  For integrity
–  Sender: Compute H = AESK(SHA1 (M)) & Send <M, H>
– Receiver: Computer H’ = AESK(SHA1 (M)) & Check H’ == H

20

CSE 486/586

Public (Asymmetric) Key Crypto
•  Developed to address two key issues

–  Key distribution: secure communication without having to
trust a key distribution center with your key

– Digital signature: verifying that a message comes from the
claimed sender without prior establishment

•  Public invention Diffie & Hellman in 1976
–  Known earlier to classified community

21 CSE 486/586

Public (Asymmetric) Key Crypto
•  Involves two keys

–  Public key: can be known to anybody, used to encrypt and
verify signatures

–  Private key: should be known only to the recipient, used to
decrypt and sign signatures

•  Asymmetric
– Can encrypt messages or verify signatures w/o ability to

decrypt msgs or create signatures
–  If “one-way function” goes c ß F(m), then public-key

encryption is a “trap-door” function:
»  Easy to compute c ß F(m)
»  Hard to compute m ß F-1(c) without knowing k
»  Easy to compute m ß F-1(c,k) by knowing k

22

CSE 486/586

Public (Asymmetric) Key Crypto

23 CSE 486/586

Security of Public Key Schemes
•  Like private key schemes, brute force search

possible
–  But keys used are too large (e.g., >= 1024 bits)

•  Security relies on a difference in computational
difficulty b/w easy and hard problems

– RSA: exponentiation in composite group vs. factoring
–  ElGamal/DH: exponentiation vs. discrete logarithm in prime

group
– Hard problems are known, but computationally expensive

•  Requires use of very large numbers
– Hence is slow compared to private key schemes
– RSA-1024: 80 us / encryption; 1460 us / decryption

[cryptopp.com]
–  AES-128: 109 MB / sec = 1.2us / 1024 bits

24

C 5

CSE 486/586

(Simple) RSA Algorithm
•  Security due to cost of factoring large numbers

–  Factorization takes O(e log n log log n) operations (hard)
–  Exponentiation takes O((log n)3) operations (easy)

•  To encrypt a message M the sender:
– Obtain public key {e,n}; compute C = Me mod n

•  To decrypt the ciphertext C the owner:
– Use private key {d,n}; computes M = Cd mod n

•  Note that msg M must be smaller than the modulus n
•  Otherwise, hybrid encryption:

– Generate random symmetric key r
– Use public key encryption to encrypt r
– Use symmetric key encryption under r to encrypt M

25 CSE 486/586

Typical Applications
•  Secure digest (with cryptographic hash functions)

–  A fixed-length that characterizes an arbitrary-length
message

–  Typically produced by cryptographic hash functions, e.g.,
SHA-1 or MD5.

•  MAC with symmetric crypto
–  Verifies the authenticity of a message
–  Sender: compute H = AESK(SHA1 (M)) & send <M, H>
– Receiver: computer H’ = AESK(SHA1 (M)) & check H’ == H

•  Digital signature with asymmetric crypto
–  Verifies a message or a document is an unaltered copy of

one produced by the signer
–  Signer: compute H = RSAK(SHA1(M)) & send <M, H>
–  Verifier: compute H’ = SHA1(M) & verify RSAK’(H) == H’

26

CSE 486/586

Summary
•  Security properties

– Confidentiality, authenticity, integrity, availability, non-
repudiation, access control

•  Three types of functions
– Cryptographic hash, symmetric key crypto, asymmetric key

crypto

•  Applications
–  Secure digest, digital signature, MAC, digital certificate

27 CSE 486/586 28

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC), Jennifer
Rexford (Princeton) and Michael Freedman
(Princeton).

