CSE 486/586 Distributed Systems Security --- 2

Steve Ko
Computer Sciences and Engineering University at Buffalo

Recap

- · Three types of functions
 - Cryptographic hash, symmetric key crypto, asymmetric key crypto
- · Cryptographic hash
 - Easy to compute h(m)
 - Hard to find an m, given h(m)
 - Hard to find two values that hash to the same h(m)
- · How to find collisions?
 - Birthday paradox: for 50% prob. & m bits, ~ 2^{m/2} numbers
- Symmetric key crypto
 - MAC: Compute H = AES_k(SHA1 (M)) & Send <M, H>
- Asymmetric key crypto
 - Guarantees rely on computational hardness

Recap

- MAC
 - Symmetric crypto
 - Verifies the authenticity of a message
 - Sender: compute H = AES_K(SHA1 (M)) & send <M, H>
 - Receiver: computer H' = AES_K(SHA1 (M)) & check H' == H
- · Digital Signatures
 - Asymmetric crypto
 - Signer: compute H = RSA_K(SHA1(M)) & send <M, H>
 - Verifier: compute H' = $RSA_{K'}(H)$ & verify H' == SHA1(M)
 - Not just integrity, but also authenticity

Heard of Firesheep?

- Firesheep
 - A Firefox extension
 - A packet sniffer to intercept unencrypted cookies from certain websites (such as Facebook and Twitter)
 - Allows the user to take on the log-in credentials of the victim
- · Solution?
 - Encrypt your traffic!
 - This is before facebook started using https, but now facebook uses https.

"Securing" HTTP

- · Threat model
 - Eavesdropper listening on conversation (confidentiality)
 - Man-in-the-middle modifying content (integrity)
 - Adversary impersonating desired website (authentication, and confidentiality)
- Enter HTTP-S
 - HTTP sits on top of secure channels
 - All (HTTP) bytes written to secure channel are encrypted and authenticated

CSE 486/586

Encrypted Communication

Hey, I want to be more secure

Sure, use this public key and encrypt your traffic Key: f-pub

(encrypted communication)

- What is wrong with this?
 - How do you know you're actually talking to facebook and f-pub belongs to facebook?

CSE 486/586

С 1

Digital Certificates

- A digital certificate is a statement signed by a third party principal, and can be reused
 - · e.g., Verisign Certification Authority (CA)
- To be useful, certificates must have:
 - A standard format, for construction and interpretation
 - · A protocol for constructing chains of certificates
 - A trusted authority at the end of the chain
- Example
 - When facebook sends you the public key, it also sends a signature for the public key signed by Verisign.
 - You pre-store Verisign's public keys & certificates (self-signed by Verisign), i.e., you have already established trust with Verisign.
 - Use Verisign's public key to verify facebook's public key.

CSE 486/586

O								
On		My Mac						
• • • • • • • • • • • • • • • • • • • •		,	•					
			_	FNMT Clase 2 CA	62	QuoVadis Root CA 3		Thawte Personal Basic CA
A-Trust-nQual-01		Cisco Root CA 2048		GeoTrust Global CA		QuoVadis Root Certification As	27	Thawte Personal Freemail CA
A-Trust-nQual-03		Class 1 Public Primary Certifici		GeoTrust Cropar CA GeoTrust Primary Certificatio		RSA Security 2048 V3	62	Thawte Personal Freemail CA
A-Trust-Qual-01				Global Chambersion Root	100	Secure Certificate Services		Thawte Personal Premium CA
A-Trust-Qual-02	67	Class 1 Public Primary Certifici			-	Secure Global CA		Thawte Personal Premium CA
AAA Certificate Services	67			GlobalSign	ä	SecureSign RootCA11	Ē	Thawte Premium Server CA
AC Raiz Certicámara S.	87	Class 2 Public Primary Certifici		GlobalSign	ä	SecureTrust CA	H	Thawte Premium Server CA
AddTrust Class 1 CA Ro		Class 2 Public Primary Certifica		GlobalSign Root CA	Ħ	Security Communication EV Ro.	Ħ	thawte Primary Root CA
AddTrust External CA #		Class 2 Public Primary Certifici		GlobalSign Root CA	H	Security Communication RootC	Ħ	thawte Primary Root CA - G2
AddTrust Public CA Ror		Class 3 Public Primary Certifica		Go Daddy Class 2 Certificatio		Security Communication RootC		Thawte Server CA
AddTrust Qualified CA	81	Class 3 Public Primary Certifics		Go Daddy Root Certificate Au	ä	Sonera Class I CA	H	Thawte Server CA
Admin-Root-CA	H.	Class 3 Public Primary Certifics		GTE CyberTrust Global Root	H	Sonera Class2 CA	=	Thawte Timestamping CA
AdmirCA-CD-T01	**	Class 4 Public Primary Certifics		Hongkong Post Root CA 1	×	Staat der Nederlanden Root CA	嘼	Trusted Certificate Services
AffirmTrust Commercia		CNNIC ROOT		http://www.valicert.com/	×	Staat der Nederlanden Root CA	×	Trustis FPS Root CA
AffirmTrust Networking		Common Policy		http://www.valicert.com/	×	Starfield Class 2 Certification A		TÜBİTAK UEKAE Kök Sertifika Hizmet Sağlavıcısı - Sürüm
AffirmTrust Premium		COMODO Certification Authori		http://www.valicert.com/	-	Starfield Root Certificate Autho		TÜRKTRUST Elektronik Sertifika Hizmet Sağlayıcısı
AffirmTrust Premium D	#1	Deutsche Telekom Root CA 2		IPS CA Chained CAs Certificat	×	Starfield Services Root Certifica		
America Online Root Cr		DigiCert Assured ID Root CA		IPS CA CLASE1 Certification A				TÜRKTRUST Elektronik Sertifika Hizmet Sağlayıcısı
America Online Root Co	87	DigiCert Global Root CA		IPS CA CLASE3 Certification A	8			TÜRKTRUST Elektronik Sertifika Hizmet Sağlayıcısı
AOL Time Warner Root				IPS CA CLASEA1 Certification	87	StartCom Certification Authorit		TWCA Root Certification Authority
AOL Time Warner Root	87	DoD CLASS 3 Root CA		IPS CA CLASEA3 Certification	27	Swisscom Root CA 1		UCA Global Root
Apple Root CA		DoD Root CA 2	80	IPS CA Timestamping Certific	ger.	SwissSign CA (RSA IK May 6 19	27	UCA Root
Apple Root Certificate A	87	DST ACES CA X6	80	lzenpe.com		SwissSign Gold CA - G2	87	UTN - DATACorp SGC
Application CA G2	87	DST Root CA X3	80	lzenpe.com	×	SwissSign Platinum CA - G2	#	UTN-USERFirst-Client Authentication and Email
ApplicationCA	87	DST Root CA X4	6 J	luur-SK	27	SwissSign Silver CA - G2	1	UTN-USERFirst-Hardware
Autoridad de Certificac	87	EBG Elektronik Sertifika Hizme	8	KISA RootCA 1	27	TC TrustCenter Class 2 CA II	27	UTN-USERFirst-Network Applications
Baltimore CyberTrust R	87	ECA Root CA	8	KISA RootCA 3	62	TC TrustCenter Class 3 CA II	62	UTN-USERFirst-Object
Belgium Root CA	87	Echoworx Root CA2	8	KMD-CA Kvalificeret Person	*	TC TrustCenter Class 4 CA II	87	VAS Latvijas Pasts SSI(RCA)
Belgium Root CA2	67	Entrust Root Certification Auth	20 1	KMD-CA Server	*	TC TrustCenter Universal CA I	1	VeriSign Class 1 Public Primary Certification Authority -
Buypass Class 2 CA 1	67	Entrust.net Certification Autho	20 1	NetLock Arany (Class Gold) F	27	TC TrustCenter Universal CA II	27	VeriSign Class 2 Public Primary Certification Authority -
Buypass Class 3 CA 1	67	Entrust.net Certification Autho	20 1	NetLock Expressz (Class C) T	27	TC TrustCenter Universal CA III	67	VeriSign Class 3 Public Primary Certification Authority -
CA Disig	67	Entrust.net Secure Server Certi	100 1	NetLock Kozjegyzoi (Class A)	62	TDC Internet Root CA	6	VeriSion Class 3 Public Primary Certification Authority -
Certigna	67	ePKI Root Certification Authori	100	NetLock Minositett Kozjegyzi	100	TDC OCES CA		VeriSion Class 4 Public Primary Certification Authority -
CertiNomis		Equifax Secure Certificate Auth	1	NetLock Uzleti (Class II) Tanu		Thawte Personal Basic CA	Ē	Visa eCommerce Root
Certum CA		Equifax Secure eBusiness CA-:		Network Solutions Certificate		Thawte Personal Basic CA	ä	VRK Gov. Root CA
Certum Trusted Networ		Equifax Secure ellusiness CA-1		DISTE WISeKey Global Root G	-	Thawte Personal Freemail CA	ä	Wells Faron Root Certificate Authority
Chambers of Commerc		Equifax Secure Global ellusine:		Prefectural Association For JF	6	Thawte Personal Freemail CA	H	WellsSecure Public Root Certificate Authority
China Internet Network	ā	Federal Common Policy CA		QueVadis Root CA 2	ä	Thawte Personal Premium CA		XRamo Clohal Certification Authority
Come and the Newson	_				4	36/586		8

X.509 Certificates

- The most widely used standard format for certificates
- Format
- Subject: Distinguished Name, Public Key
- Issuer: Distinguished Name, Signature
- Period of validity: Not Before Date, Not After Date
- Administrative information: Version, Serial Number
- Extended information
- · Binds a public key to the subject
 - A subject: person, organization, etc.
- The binding is in the signature issued by an issuer.
 - You need to either trust the issuer directly or indirectly (by establishing a root of trust).

CSE 486/586

X.509 Certificates Dear Cortificates Dear Dear Cortificates Dear Cortificates Dear Cortificates Dear Co

Transport Layer Security (TLS)

- SSL (Secure Socket Layer) was developed by Netscape for electronic transaction security.
- SSL was adopted as TLS as an Internet standard.
- A protocol layer is added below the application layer for:
 - Negotiating encryption and authentication methods.
 - Bootstrapping secure communication
- It consists of two layers:
 - The Record Protocol Layer implements a secure channel by encrypting and authenticating messages
 - The Handshake Layer establishes and maintains a secure session between two nodes.

CSE 486/586

TLS Protocol Stack

TLS Handshake Cipher Spec Protocol

TLS Record Protocol

Transport layer (usually TCP)

Network layer (usually IP)

TLS protocols:

Other protocols:

C 2

CSE 486/586 Administrivia

- · PA4 due Friday next week
- Final: 5/15 (Friday), 11:45am 2:45pm
 NSC 201

CSE 486/586

Authentication

- Use of cryptography to have two principals verify each others' identities.
 - Direct authentication: the server uses a shared secret key to authenticate the client.
 - Indirect authentication: a trusted authentication server (third party) authenticates the client.
 - The authentication server knows keys of principals and generates temporary shared key (ticket) to an authenticated client. The ticket is used for messages in this session.
 - E.g., Verisign servers

CSE 486/586

Direct Authentication • Authentication with a secret key "Nonce" (used as a "challenge")=random num, The property of the

C 3

Needham-Schroeder Authentication

- · An authentication server provides secret keys.
 - Every client shares a secret key with the server to encrypt their channels
- If a client A wants to communicate with another client B.
 - The server sends a key to the client A in two forms.
 - First, in a plain form, so that the client A can use it to encrypt its channel to the client B.
 - Second, in an encrypted form (with the client B's secret key), so that the client B can know that the key is valid.
 - The client A sends this encrypted key to the client B as well.
- · Basis for Kerberos

CSF 486/586

586

Kerberos

- · Follows Needham-Schroeder closely
- Time values used for nonces
 - To prevent replay attacks
 - To enforce a lifetime for each ticket
- Very popular
 - An Internet standard
 - Default in MS Windows

CSE 486/586

Summary

- Digital certificates
 Binds a public key to its owner
 Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

Acknowledgements

These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Jennifer Rexford (Princeton) and Michael Freedman (Princeton).

С 5