Recap

- Digital certificates
 - Binds a public key to its owner
 - Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

Byzantine Fault Tolerance

- Fault categories
 - Benign: failures we’ve been talking about
 - Byzantine: arbitrary failures
- Benign
 - Fail-stop & crash: process halted
 - Omission: msg loss, send-omission, receive-omission
 - All entities still follow the protocol
- Byzantine
 - A broader category than benign failures
 - Process or channel exhibits arbitrary behavior.
 - May deviate from the protocol
 - Processes can crash, messages can be lost, etc.
 - Can be malicious (attacks, software bugs, etc.)

Result: with \(f \) faulty nodes, we need \(3f + 1 \) nodes to tolerate their Byzantine behavior.

- Fundamental limitation
- Today’s goal is to understand this limitation.

How about Paxos (that tolerates benign failures)?

- With \(f \) faulty nodes, we need \(2f + 1 \).
- Having \(f \) faulty nodes means that as long as \(f + 1 \) nodes are reachable, Paxos can guarantee an agreement.
- This is the known lower bound for consensus with non-Byzantine failures.

“Byzantine”

- Leslie Lamport (again!) defined the problem & presented the result.
- "I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves."
- "At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem."
- “…The obviously more appropriate Byzantine generals then occurred to me.”

Introducing the Byzantine Generals

- Imagine several divisions of the Byzantine army camped outside of a city
- Each division has a general.
- The generals can only communicate by a messenger.
Introducing the Byzantine Generals

- They must decide on a common plan of action.
 - What is this problem?
- But, some of the generals can be traitors.

More Practical Setting

- Replicated Web servers
 - Multiple servers running the same state machine.
 - For example, a client asks a question and each server replies with an answer (yes/no).
 - The client determines what the correct answer is based on the replies.

More Practical Setting

- f Byzantine failures
 - At any point of time, there can be up to f failures.
- Many possibilities for a failure
 - A crashed process, a message loss, malicious behavior (e.g., a lie), etc., but a client cannot tell which one it is.
 - But in total, the maximum # of failures is bounded by f.

BFT Question

- Given f, how many nodes do we need to tolerate f Byzantine failures?
 - f failures can be any mix of malicious servers, crashed servers, message losses, etc.
 - Malicious servers can do anything, e.g., they can lie (if yes, say no, if no, say yes).

CSE 486/586 Administrivia

- PA4 due Friday next week
- Final: 5/15 (Friday), 11:45am – 2:45pm
 - NSC 201
 - Everything
 - No restroom use (this quickly becomes chaotic)

Intuition for the Result

- Let’s say we have n servers, and maximum f Byzantine failures.
 - What is the minimum # of replies that you are always guaranteed to get?
 - $n - f$
 - Why? f maximum failures can all be crashed processes
Intuition for the Result

• The problem is that a client does not know what kinds those f failures are.
 - Upon receiving $n - f$ replies (guaranteed), can the client tell if the rest of the replies will come?
 - No, f faults might all be crashed processes. But what does this mean?

Intuition for the Result

• This means that if a client receives $n - f$ replies, the client needs to determine what the correct answer is. The rest of the replies might never come.
 - Upon receiving $n - f$ replies, how many replies can come from malicious servers (i.e., lies)?
 - Still f, since a server can just be really slow.

Intuition for the Result

• What can be the minimum n to determine the correct answer? $n = 2f + 1$?
 - It doesn’t work.
 - How can we make it work?
 - If we make sure that $n - f$ replies always contain more replies from honest nodes than Byzantine nodes, we’re safe.

Intuition for the Result

• How can we make sure that $n - f$ replies always contain more replies from honest nodes than Byzantine nodes?
 - We set $n = 3f + 1$
 - We can always obtain $n - f$, i.e., $2f + 1$ votes. Then we have at least $f + 1$ votes from honest nodes, one more than the number of potential faulty nodes.

Write/Read Example

• One client writes to X.
• A malicious node omits it.
• Another client reads X.
• It can still get the latest write.

Summary

• Byzantine generals problem
 - They must decide on a common plan of action.
 - But, some of the generals can be traitors.
• Requirements
 - All loyal generals decide upon the same plan of action (e.g., attack or retreat).
 - A small number of traitors cannot cause the loyal generals to adopt a bad plan.
• Impossibility result
 - In general, with less than $3f + 1$ nodes, we cannot tolerate f faulty nodes.
Acknowledgements

• These slides contain material developed and copyrighted by Indranil Gupta (UIUC).