Byzantine Fault Tolerance

- Fault categories
 - Benign: failures we’ve been talking about
 - Byzantine: arbitrary failures
- Benign
 - Fail-stop & crash: process halted
 - Omission: msg loss, send-omission, receive-omission
 - All entities still follow the protocol
- Byzantine
 - A broader category than benign failures
 - Process or channel exhibits arbitrary behavior.
 - May deviate from the protocol
 - Processes can crash, messages can be lost, etc.
 - Can be malicious (attacks, software bugs, etc.)

Recap

- Digital certificates
 - Binds a public key to its owner
 - Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

“Byzantine”

- Leslie Lamport (again!) defined the problem & presented the result.
- “I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves.”
- “At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem.”
- “…The obviously more appropriate Byzantine generals then occurred to me.”

Introducing the Byzantine Generals

- Imagine several divisions of the Byzantine army camped outside of a city
- Each division has a general.
- The generals can only communicate by a messenger.
Introducing the Byzantine Generals

• They must decide on a common plan of action.
 – What is this problem?
• But, some of the generals can be traitors.

Requirements

• All loyal generals decide upon the same plan of action (e.g., attack or retreat).
• A small number of traitors cannot confuse the loyal generals nor cause the loyal generals to adopt a bad plan.
• There has to be a way to communicate one’s opinion to others correctly.

The Byzantine Generals Problem

• The problem boils down to how a single general sends the general’s own value to the others.
 – Thus, we can simplify it in terms of a single commanding general sending an order to lieutenant generals.
• Byzantine Generals Problem: a commanding general must send an order to \(n-1 \) lieutenant generals such that
 – All loyal lieutenants obey the same order.
 – If the commanding general is loyal, then every loyal lieutenant obeys the order the commanding general sends.
• We’ll try a simple strategy and see if it works.
 – All-to-all communication: every general sends the opinion & repeatedly sends others’ opinions for reliability.
 – Majority: the final decision is the decision of the majority
 – Similar to reliable multicast

Question

• Can three generals agree on the plan of action?
 – One commander
 – Two lieutenants
 – One of them can be a traitor.
 – Want no confusion, no bad plan, but a good plan.
• This means that we have \(2f + 1 \) nodes.
 – Again, this is the known lower bound for consensus with non-Byzantine nodes.
 – Protocols like Paxos provides the consensus guarantee.
• The question is if we can still have this same minimum nodes to reach consensus with Byzantine nodes.

Understand the Problem

Commander

(_traitor)

Lieutenant 1

“he said ‘retreat’”

Lieutenant 2

“attack”

“retreat”
Understanding the Problem

One traitor makes it impossible with three generals.

Comparison to non-Byzantine failures (e.g., Paxos)
- With non-Byzantine failures, f nodes can fail (or disappear) from the system, but they don’t lie.
- E.g., Paxos works with 2f + 1 nodes when f nodes are faulty (i.e., f + 1 nodes are reachable).
- In the Byzantine generals problem, these f nodes might be alive and malicious. Failures are not any more about reachability.
- Even if some nodes are reachable, they might be lying.
- Additional concern: Is this true?
- In general, you need 3f + 1 nodes to tolerate f faulty nodes in the Byzantine generals problem.
- Why?

Intuition for the Result

With non-Byzantine failures
- Up to f nodes can be unreachable, meaning, if there is n nodes, you might only get n – f votes.
- This means that just with n – f votes, you should be able to make a decision on consensus.
- If we set n == 2f + 1, we can do just that, e.g., Paxos.

With Byzantine failures
- One extreme: Up to f nodes can be unreachable (if all exhibit non-Byzantine failures), meaning, if there is n nodes, you might only get n – f votes, i.e., you should be able to make a decision on consensus with just n – f votes.
- Another extreme: Up to f nodes can be lying if all exhibit Byzantine failures, i.e., you should still be able to make a decision on consensus with just n – f votes, even if f votes out of those n – f votes are in fact lies.
- What is the minimum n then?

Let’s try n == 2f + 1.
- We should be able to reach consensus with n – f votes, i.e., f + 1 votes (due to potential unreachability from last slide).
- And, out of f + 1 votes, it’s possible that f votes are in fact lies.

Example
- 2f + 1 nodes, and outcome by f + 1 votes.
- f faulty nodes say no.
- f + 1 non-faulty nodes say yes
- You get f + 1 votes.
- Ideal scenario?
- Other possibilities?
- n == 2f + 1 does not work.
Intuition for the Result

- Once again (reminder),
 - We should be able to reach consensus with \(n - f \) votes.
 - And, out of \(n - f \) votes, it’s possible that \(f \) votes are lies.
- Intuition
 - If we make sure that \(n - f \) votes always contain more votes from honest nodes than Byzantine nodes, we’re safe.
 - E.g., among \(n - f \) server replies, if there are more replies from honest servers, we can determine the correct result.
- How can we make sure of this?
 - We set \(n = 3f + 1 \).
 - We can always obtain \(n - f \), i.e., \(2f + 1 \) votes. Then we have at least \(f + 1 \) votes from honest nodes, one more than the number of potential faulty nodes.

Summary

- Byzantine generals problem
 - They must decide on a common plan of action.
 - But, some of the generals can be traitors.
- Requirements
 - All loyal generals decide upon the same plan of action (e.g., attack or retreat).
 - A small number of traitors cannot cause the loyal generals to adopt a bad plan.
- Impossibility results
 - With three generals, it’s impossible to reach a consensus with one traitor.
 - In general, with less than \(3f + 1 \) nodes, we cannot tolerate \(f \) faulty nodes.

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC).