
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Graph Processing

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  Byzantine generals problem

–  They must decide on a common plan of action.
–  But, some of the generals can be traitors.

•  Requirements
–  All loyal generals decide upon the same plan of action (e.g.,

attack or retreat).
–  A small number of traitors cannot cause the loyal generals to

adopt a bad plan.
•  Impossibility result

–  In general, with less than 3f + 1 nodes, we cannot tolerate f
faulty nodes.

2

CSE 486/586

Today
•  Distributed Graph Processing
•  Google’s Pregel system

–  Inspiration for many newer graph processing systems:
Piccolo, Giraph, GraphLab, PowerGraph, LFGraph, X-
Stream, etc.

3 CSE 486/586

What Graphs?
•  Large graphs are all around us
•  Internet Graph: vertices are routers/switches and

edges are links
•  World Wide Web: vertices are webpages, and edges

are URL links on a webpage pointing to another
webpage

– Called “Directed” graph as edges are uni-directional

•  Social graphs: Facebook, Twitter, LinkedIn
•  Biological graphs: DNA interaction graphs,

ecosystem graphs, etc.

4

CSE 486/586

What Graph Analysis?
•  Need to derive properties from these graphs
•  Need to summarize these graphs into statistics
•  E.g., find shortest paths between pairs of vertices

–  Internet (for routing)
–  LinkedIn (degrees of separation)

•  E.g., do matching
– Dating graphs in match.com (for better dates)

•  PageRank
– Web Graphs
– Google search, Bing search, Yahoo search: all rely on this

•  And many (many) other examples!

5 CSE 486/586

What Are the Difficulties?
•  Large!

– Human social network has 100s Millions of vertices and
Billions of edges

– WWW has Millions of vertices and edges

•  Hard to store the entire graph on one server and
process it

–  Slow on one server (even if beefy!)

•  Need a distributed solution

6

C 2

CSE 486/586

Example
•  Are C and D connected?
•  Can we get all connected pairs?

7

A

B
C

D E

CSE 486/586

Typical Graph Processing
•  Works in iterations
•  Each vertex assigned a value
•  In each iteration, each vertex:

– Gathers values from its immediate neighbors (vertices who
join it directly with an edge). E.g., @A: BàA, CàA, DàA,…

– Does some computation using its own value and its
neighbors values.

– Updates its new value and sends it out to its neighboring
vertices. E.g., AàB, C, D, E

•  Graph processing terminates after: i) fixed iterations,
or ii) vertices stop changing values

8

A
B C

D
E

CSE 486/586

Example
•  Are C and D connected?

9

A

B
C

D E

CSE 486/586

One Possible Way
•  Each vertex has two Boolean variables.

–  Cflag: true/false
–  Dflag: true/false

•  Goal
–  Cflag: Am I connected to C?
–  Dflag: Am I connected to D?
–  If both are true at any of the vertices, C and D are connected.
–  Initially all false, except at C and D.

•  Every iteration:
–  Propagates its values to neighboring vertices.
–  Collects the values from other vertices.
–  Updates the variables with OR, i.e., if any one of the values is

true, it’s true.
•  Iterate N times, where N is the length of the longest path

in the entire graph.
10

CSE 486/586

Recall MapReduce?

11

Map phase

Shuffle phase

Reduce
phase

CSE 486/586

Can We Use MapReduce?
•  Run MapReduce N times, where N is the length of

the longest path. Goal for each iteration:
–  Propagate each vertex’s Cflag & Dflag values to their

neighboring vertices.
– Collect Cflag & Dflag values from other vertices.
– Update each of the Cflag & Dflag variables with OR, i.e., if

any one of the values is true, it’s true.

•  Map
–  Input (key, value)? Computation? Output list of (intermediate

key, intermediate value)?

•  Shuffle: Grouping based on intermediate keys.
–  Each intermediate key will get a list of intermediate values.

•  Reduce
–  Input (intermediate key, list of intermediate values)?

Computation? Output (final key, final value)?
12

C 3

CSE 486/586

MapReduce
•  Run MapReduce N times
•  Map

–  Input (key, value): (vertex id, (current Cflag & Dflag values))
– Computation: nothing.
– Output list of (intermediate key, intermediate value): list of

(neighboring vertex id, current Cflag & Dflag values)
»  For each neighboring vertex, propagate Cflag & Dflag values

•  Shuffle
– Grouping based on vertex ids.

•  Reduce
–  Input (intermediate key, intermediate value): (vertex id, list of

neighbors’ current Cflag & Dflag values)
– Computation: OR
– Output (key, value): (vertex id, updated Cflag & Dflag

values)
13 CSE 486/586

Pros and Cons
•  Pros

– Well-known
–  The system is there.
–  It works.

•  Cons
– Not quite a good fit
– Need to re-think in terms of keys, values, maps, and

reduces.

•  Question
– Can we provide a system that is a better fit for graph

processing?

14

CSE 486/586

Bulk Synchronous Parallel Model
•  Originally by Valiant (1990)

15 CSE 486/586

Better Programming Model
•  Vertex-centric programming
•  In each iteration, each vertex performs Gather-

Apply-Scatter for all its assigned vertices
– Gather: get all neighboring vertices’ values
–  Apply: compute own new value from own old value and

gathered neighbors’ values
–  Scatter: send own new value to neighboring vertices

16

CSE 486/586

Google Pregel
•  Gives simple APIs for easier graph processing
•  Vertex-centric programming
•  Developer’s code subclasses Vertex class
•  Implements Compute() method.
•  Vertex class allows a developer to:

– Get/set vertex values
– Get/set outgoing edge values (e.g., for weighted graphs)
–  Send/receive messages to any vertex

•  Gather-apply-scatter
– Gather is done automatically (with scatter from the previous

iteration)
–  Apply is done by Compute()
–  Scatter is done by explicit message passing

17 CSE 486/586

Page Rank Example

18

C 4

CSE 486/586

Shortest Path Example

19 CSE 486/586

Google Pregel
•  Pregel uses the master/worker model

– Master (one server)
» Maintains list of worker servers
» Monitors workers; restarts them on failure
»  Provides Web-UI monitoring tool of job progress

– Worker (rest of the servers)
»  Processes its vertices
» Communicates with the other workers

•  Naturally captures a graph structure (vertex per
worker)

•  Persistent data is stored as files on a distributed
storage system (such as GFS or BigTable)

•  Temporary data is stored on local disk
20

CSE 486/586

Pregel Execution
1.  Many copies of the program begin executing on a cluster
2.  The master assigns a partition of input (vertices) to each

worker
1.  Each worker loads the vertices and marks them as active

3.  The master instructs each worker to perform a iteration
1.  Each worker loops through its active vertices & computes for

each vertex

2.  Messages can be sent whenever, but need to be delivered
before the end of the iteration (i.e., the barrier)

3.  When all workers reach iteration barrier, master starts next
iteration

4.  Computation halts when, in some iteration: no vertices are
active and when no messages are in transit

5.  Master instructs each worker to save its portion of the
graph

21 CSE 486/586

Summary
•  Lots of (large) graphs around us
•  Need to process these
•  MapReduce not a good match
•  Distributed Graph Processing systems: Pregel by

Google

22

CSE 486/586 23

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

