CSE 486/586 Distributed Systems
Android Programming --- 1

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap ,”

* What to put on top of physical networks?
— Layers providing survivability
* Where to put functionalities?
— Fate-sharing & end-to-end arguments
— IP layer doesn’t provide much
— TCP handles most of the survivability issues
* TCP & UDP: the two transport protocols of the
Internet
« What interface do applications see?
— Socket API

CSE 486/586

Today

« Basic Android programming interleaved with a review
of PA1

* Mainly programming model and components
* We will look at PA1 template code alongside.
+ Caveats

— Not really a comprehensive tutorial
— Just touching on basics

« Will have more of these later as more PAs come out.

CSE 486/586

Three Most Important Things

« Tools that you need to be familiarized with:
— Android APIs and constructs
— Debugging

* Read the documentation.

— Learn how to use the APIs and the constructs, e.g.,
AsyncTask, Messenger, etc.

— Learn how to work within the Android’s constraints.
* Learn how to debug.
— Using LogCat, DDMS, etc.

— Much time is spent on debugging, so learn how to use the
tools.

« Incremental development
— First write the minimum possible thing to execute your app.
— lterate: write something and debug

CSE 486/586

Android Programming Model

 Three things to keep in mind.
« The responsibilities of the OS
« The responsibilities of an app
« How the OS knows the responsibilities of an app.
* App
* No main()
« Event-driven (reacting to events)
+ OS
« Deliver events by calling appropriate callbacks
» AndroidManifest.xml
« An app declares its capabilities (e.g., its permissions).
« An app registers all the callbacks.

CSE 486/586

What? No main()?

There is a main()! It's just that it's hidden.
Zygote starts at boot.

Launcher sends a message to start an activity.
Zygote forks a new VM instance that loads
ActivityThread.

« ActivityThread has the real main() for an app.
/-\tctivityThread calls the app’s onCreate(), onStart(),
etc.

What main() does is implementing an event loop.

« Wait for an event to happen.

« When an event happens, look up which callback handles the
event.

« Call the callback.
* Loop

CSE 486/586

Example - Activity

public class Activity extends ApplicationContext {

protected void

protected void

protected void

protected void

protected void

protected void

protected void

onCreate(Bundle savedInstanceState);

onStart();

onRestart () ;

onResume () ;

onPause() ;

onstop();

onDestroy () ;

Example - Activity

Resumed
(visible)
onResume() onPause()
onResume()
Started Paused
(visible) _(partially visivle)
onStart() onstop()
onStart()
([~ Stopped
— Created -onRestart()—————) emm—
onCreate() - 4 . (niddem) onDestroy()

Destroyed ‘

CSE 486/586

CSE 486/586

Declare in AndroidManifest.xml

<manifest ... >

<application ... >
<activity android:name=".ExampleActivity" />

</application>
</manifest>

CSE 486/586 9

Define Permissions

« Should define permissions (for others) in
AndroidManifest.xml

« <uses-permission
android:name="android.permission.INTERNET"/>

CSE 486/586 10

CSE 486/586 Administrivia

* Please use Piazza; all announcements will go there.
« Please come to my office during the office hours!
— Give feedback about the class, ask questions, etc.

CSE 486/586 1

More

* Logging statements
* Running a terminal window per AVD
* Questions?

CSE 486/586 12

Ny

