CSE 486/586 Distributed Systems
Time and Synchronization

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

* Models of Distributed Systems
— Synchronous systems
— Asynchronous systems
« Failure detectors---why?
— Because things do fail.
« Failure detectors---what?
— Properties: completeness & accuracy
— Cannot have a perfect failure detector
— Metrics: bandwidth, detection time, scale, accuracy
« Failure detectors---how?
— Two processes: Heartbeating and Ping
— Multiple processes: Centralized, ring, all-to-all

CSE 486/586 2

Today’s Question

* The topic of time

— Today and next time
« Why?

— Need to know when things happen

— One of the two fundamental challenges (failure & ordering)
* What?

— Ideally, we'd like to know when exactly something
happened.

* How?
— Let's see!

CSE 486/586

Today’s Question

« Servers in the cloud need to timestamp events
« Server A and server B in the cloud have different
clock values
— You buy an airline ticket online via the cloud
— It's the last airline ticket available on that flight
— Server A timestamps your purchase at 9h:15m:32.45s

— What if someone else also bought the last ticket (via server
B) at 9h:20m:22.76s?

— What if Server A was > 10 minutes ahead of server B?
Behind?

— How would you know what the difference was at those
times?

CSE 486/586 4

Physical Clocks & Synchronization

» Some definitions: Clock Skew versus Drift
« Clock Skew = Relative Difference in clock values of two
processes

« Clock Drift = Relative Difference in clock frequencies (rates)
of two processes

« A non-zero clock drift will cause skew to continuously
increase.
* Real-life examples

— Ever had “make: warning: Clock skew detected. Your build
may be incomplete.”?

— It's reported that in the worst case, there’s 1 sec/day drift in
modern HW.

— Almost all physical clocks experience this.
CSE 486/586

Synchronizing Physical Clocks

« Ci(t): the reading of the software clock at process i when the
real time is t.

External synchronization: For a synchronization bound D>0,
and for source S of UTC time,

IS(t)-Ci(1)| <D,

for i=1,2,...,N and for all real times t.

Clocks C; are accurate to within the bound D.

Internal synchronization: For a synchronization bound D>0,
Ci()-C;(0) <D

for i, j=1,2,...,N and for all real times t.

Clocks C; agree within the bound D.

External synchronization with D = Internal synchronization with
2D

Internal synchronization with D = External synchronization
with ??

CSE 486/586 6

Clock Synchronization Using a Time
Server

i 2!
it »0
n
u
m
p Time server,S
CSE 486/586 7

Cristian’s Algorithm

Uses a time server to synchronize clocks

Mainly designed for LAN

Time server keeps the reference time (say UTC)

A client asks the time server for time, the server
responds with its current time T, and the client uses
the received value T to set its clock

But network round-trip time introduces an error.

¥+ Sowhat do we need to do?

— Estimate one-way delay

CSE 486/586 8

Cristian’s Algorithm

« Let RTT = response-received-time — request-sent-
time (measurable at client)

« Also, suppose we know

— The minimum value min of the client-server one-way
transmission time [Depends on what?]

— That the server timestamped the message at the last
possible instant before sending it back

* Then, the actual time could be between [T+min,T

+RTT— min]
T
 min 7 A s min
RTT .
Request sent Response received
CSE 486/586 B

Cristian’s Algorithm

« (From the previous slide), the accuracy is: +-(RTT/2
—min)

« Cristian’s algorithm

— A client asks its time server.

— The time server sends its time T.

— The client estimates the one-way delay and sets its time.

» ltuses T + RTT/2

« Want to improve accuracy?

— Take multiple readings and use the minimum RTT - tighter
bound

— For unusually long RTTs, ignore them and repeat the
request > removing outliers

CSE 486/586 10

CSE 486/586 Administrivia

* Please start PA2-A.

* Please use Piazza; all announcements will go there.
— If you want an invite, let me know.

» Please come to my office during the office hours!
— Give feedback about the class, ask questions, etc.

CSE 486/586 1

The Network Time Protocol (NTP)

» Uses a network of time servers to synchronize all
processes on a network.

 Designed for the Internet

/3' = Why not Christian’s algo.?

« Time servers are connected by a synchronization
subnet tree. The root is in touch with UTC. Each
node synchronizes its children nodes.

’/s * Why? Primary server, direct syn

Secondry servers,
sync’ed by the
primary server

CSE 486/586 12

Ny

Messages Exchanged Between a
Pair of NTP Peers (“Connected

Servers”)
Server B
\ / \ / Time
Time
Server A T3 T

Each message bears timestamps of recent message
events: the local time when the previous NTP
message was sent and received, and the local time
when the current message was transmitted.

CSE 486/586 13

The Protocol

Server Tio Tiq

Time

Time
Client Tis Ti

» Compute round-trip delay: (T, — Ti3) — (Tiy — Tip)

« Take the half of the round-trip delay as the one-way
estimate: ((T; — Ti3) — (Tiy — Tin))/2

CSE 486/586 14

The Protocol

[\ [

Time

Server

Client T3 T

Compute offset: T, + (one-way estimate) - T, = (T,
= Tig) + (T — T2

Do this with not just one server, but multiple servers.
Do some statistical analysis, remove outliers, and
apply a data filtering algorithm.

— Out of the scope of this lecture
CSE 486/586 15

Theoretical Base for NTP

Server B

\ [\ /[

Time

Server A

« 0o estimate of the actual offset between the two
clocks

« d; estimate of accuracy of o, ; total transmission
times for m and m’; d=t+t’

CSE 486/586 16

Theoretical Base for NTP

Server B

Time
\ Alth delay f) t\W|th delay [/

Time

Server A

First, let's get o Finally, we set:

Tia=Tis+i+o 0i=(Tia=Tiss+Tia = TD/2
Ti=Tia+t'-0 di=t+1'=Tis—-Tis+Ti-Ti
=0=(Ti2=Tis+Tia=T)/12+{#'=1)/2| | Then we get:

Then, get the bound for (¢'-)/2: oi-dil2<so0=<o0;+d;/2.

—t'-t=t'-t <t'+t (since t',t =0)

CSE 486/586 17

Then a Breakthrough...

We cannot sync multiple clocks perfectly.
Thus, if we want to order events happened at
different processes (remember the ticket reservation
example?), we cannot rely on physical clocks.
Then came logical time.

— First proposed by Leslie Lamport in the 70’s

— Based on causality of events

— Defined relative time, not absolute time
Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive
messages.

CSE 486/586 18

Events Occurring at Three

Summary

» Time synchronization important for distributed
systems
— Cristian’s algorithm
— Berkeley algorithm
— NTP
» Relative order of events enough for practical
purposes
— Lamport’s logical clocks

« Next: continue on logical clocks

CSE 486/586 20

Processes
P1
a b\
0, "\ Phyé cal
c dw‘ time
P3
e f
CSE 486/586 19
Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

CSE 486/586 21

