CSE 486/586 Distributed Systems
Paxos

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap

» Facebook photo storage
— CDN (hot), Haystack (warm), & f4 (very warm)
« Haystack

— RAID-6, per stripe: 10 data disks, 2 parity disks, 2 failures
tolerated

— Replication degree within a datacenter: 2
— 4 total disk failures tolerated within a datacenter
— One additional copy in another datacenter
— Storage usage: 3.6X (1.2X for each copy)
- 4

— Reed-Solomon code, per stripe: 10 data disks, 4 parity
disks, 4 failures tolerated within a datacenter

— One additional copy XOR'’ed to another datacenter
— Storage usage: 2.1X

CSE 486/586

Paxos

« A consensus algorithm

— Known as one of the most efficient & elegant consensus
algorithms

— If you stay close to the field of distributed systems, you'll
hear about this algorithm over and over.

* What? Consensus? What about FLP (the
impossibility of consensus)?
— Obviously, it doesn’t solve FLP.
— It relies on failure detectors to get around it.
* Plan
— Brief history (with a lot of quotes)
— The protocol itself

- “ (this is now optional in the
schedule).

CSE 486/586 3

Brief History

« Developed by Leslie Lamport (from the Lamport
clock)

“A fault-tolerant file system called Echo was built at
SRC in the late 80s. The builders claimed that it
would maintain consistency despite any number of
non-Byzantine faults, and would make progress if
any majority of the processors were working.”

“I decided that what they were trying to do was
impossible, and set out to prove it. Instead, |
discovered the Paxos algorithm.”

“I decided to cast the algorithm in terms of a
parliament on an ancient Greek island (Paxos).”

CSE 486/586

Brief History

« The paper abstract:

— “Recent archaeological discoveries on the island of Paxos
reveal that the parliament functioned despite the peripatetic
propensity of its part-time legislators. The legislators
maintained consistent copies of the parliamentary record,
despite their frequent forays from the chamber and the
forgetfulness of their messengers. The Paxon parliament’s
protocol provides a new way of implementing the state-
machine approach to the design of distributed systems.”

“I gave a few lectures in the persona of an Indiana-
Jones-style archaeologist.”

“My attempt at inserting some humor into the subject
was a dismal failure. People who attended my
lecture remembered Indiana Jones, but not the
algorithm.”

CSE 486/586 5

Brief History

People thought that Paxos was a joke.
Lamport finally published the paper 8 years later in
1998 after it was written in 1990.

— Title: “The Part-Time Parliament”
People did not understand the paper.
Lamport gave up and wrote another paper that
explains Paxos in simple English.

— Title: “Paxos Made Simple”

— Abstract: “The Paxos algorithm, when presented in plain

English, is very simple.”
Still, it’s not the easiest algorithm to understand.
So people started to write papers and lecture notes
to explain “Paxos Made Simple.” (e.g., “Paxos Made
Moderately Complex”, “Paxos Made Practical”, etc.)
CSE 486/586




Review: Consensus

* How do people agree on something?

— Q: should Steve give an A to everybody taking CSE
486/5867?

— Input: everyone says either yes/no.
— Output: an agreement of yes or no.

— FLP: this is impossible even with one-faulty process and
arbitrary delays.

* Many distributed systems problems can cast into a
consensus problem
— Mutual exclusion, leader election, total ordering, etc.
» Paxos
— How do multiple processes agree on a value?
— Under failures, network partitions, message delays, etc.

CSE 486/586 7

Review: Consensus

» People care about this!

* Real systems implement Paxos
— Google Chubby
— MS Bing cluster management
- Etc.

* Amazon CTO Werner Vogels (in his blog post “Job
Openings in My Group”)
— “What kind of things am I looking for in you?”

— “You know your distributed systems theory: You know about
logical time, snapshots, stability, message ordering, but also
acid and multi-level transactions. You have heard about the
FLP impossibility argument. You know why failure detectors
can solve it (but you do not have to remember which one
diamond-w was). You have at least once tried to understand
Paxos by reading the original paper.”

CSE 486/586 8

CSE 486/586 Administrivia

* PA4 due 5/6 (Friday)
« Final: Thursday, 5/12, 8am — 11am at Knox 20

CSE 486/586 9

Paxos Assumptions & Goals

The network is asynchronous with message delays.

The network can lose or duplicate messages, but
cannot corrupt them.

Processes can crash.

Processes are non-Byzantine (only crash-stop).
Processes have permanent storage.

Processes can propose values.

The goal: every process agrees on a value out of the
proposed values.

CSE 486/586 10

Desired Properties

« Safety
— Only a value that has been proposed can be chosen
— Only a single value is chosen

— A process never learns that a value has been chosen unless
it has been

* Liveness
— Some proposed value is eventually chosen
— If a value is chosen, a process eventually learns it

CSE 486/586 1

Roles of a Process

Three roles

Proposers: processes that propose values
Acceptors: processes that accept (i.e., consider)
values

— “Considering a value™: the value is a candidate for
consensus.

— Majority acceptance - choosing the value

Learners: processes that learn the outcome (i.e.,
chosen value)

CSE 486/586 12

Ny



Roles of a Process

« In reality, a process can be any one, two, or all three.
 Important requirements

— The protocol should work under process failures and with
delayed and lost messages.

— The consensus is reached via a majority (> %%).
« Example: a replicated state machine

— All replicas agree on the order of execution for concurrent
transactions

— All replica assume all roles, i.e., they can each propose,
accept, and learn.

CSE 486/586 13

,/S'

First Attempt

« Let’s just have one acceptor, choose the first one that
arrives, & tell the proposers about the outcome.

V:3
* What's wrong?

— Single point of failure!
CSE 486/586 14

Second Attempt

« Let's have multiple acceptors; each accepts the first
one; then all choose the majority and tell the
proposers about the outcome.

Second Attempt

« One example, but many other possibilities

CSE 486/586

, V:3
¥« What's wrong? (next slide)
/ CSE 486/586 15
Paxos

« Let's have multiple acceptors each accept (i.e.,
consider) multiple proposals.

— An acceptor accepting a proposal doesn’t mean it will be
chosen. A majority should accept it.

— Make sure one of the multiple accepted proposals will have
a vote from a majority (will get back to this later)

« Paxos: how do we select one value when there are
multiple acceptors accepting multiple proposals?

CSE 486/586 17

Paxos Protocol Overview

« A proposal should have an ID (since there’s multiple).
— (proposal #, value) == (N, V)

— The proposal # strictly increasing and globally unique across
all proposers, i.e., there should be no tie.

— E.g., (per-process number).(process id) == 3.1, 3.2, 4.1, etc.
* Three phases

— Prepare phase: a proposer learns previously-accepted
proposals from the acceptors.

— Propose phase: a proposer sends out a proposal.
— Learn phase: learners learn the outcome.

CSE 486/586 18




Paxos Protocol Overview

» Rough description of the proposers

— Before a proposer proposes a value, it will ask acceptors if
there is any proposed value already.

— If there is, the proposer will propose the same value, rather
than proposing another value.

— Even with multiple proposals, the value will be the same.
— The behavior is altruistic: the goal is to reach a consensus,
rather than making sure that “my value” is chosen.
* Rough description of the acceptors

— The goal for acceptors is to accept the highest-numbered
proposal coming from all proposers.

— An acceptor tries to accept a value V with the highest
proposal number N.

» Rough description of the learners
— All learners are passive and wait for the outcome.

CSE 486/586 19

Paxos Phase 1

« A proposer chooses its proposal number N and
sends a prepare request to acceptors.
— “Hey, have you accepted any proposal yet?”
* Note: Acceptors keep the history of proposals.
« An acceptor needs to reply:
— If it accepted anything, the accepted proposal and its value
with the highest proposal number less than N
— This reply also means a promise to not accept any proposal
numbered less than N any more (to make sure that it doesn’t
alter the result of the reply).

CSE 486/586

Paxos Phase 2

« If a proposer receives a reply from a majority, it
sends an accept request with the proposal (N, V).
— V: the value from the highest proposal number N from the
replies (i.e., the accepted proposals returned from acceptors
in phase 1)
— Or, if no accepted proposal was returned in phase 1, a new
value to propose.

« Upon receiving (N, V), acceptors either:
— Accept it
— Or, reject it if there was another prepare request with N’
higher than N, and it replied to it (due to the promise in
phase 1).
(N, V): (3, 10)

(N, V): (4, 10)

(N, V): (2, 20) (N, V): (4, 10)

CSE 486/586

Paxos Phase 3

Learners need to know which value has been
chosen.
Many possibilities
One way: have each acceptor respond to all learners,
whenever it accepts a proposal.
— Learners will know if a majority has accepted a proposal.
— Might be effective, but expensive
Another way: elect a “distinguished learner”
— Acceptors respond with their acceptances to this process
— This distinguished learner informs other learners.
— Failure-prone
Mixing the two: a set of distinguished learners

CSE 486/586 22

Problem: Progress (Liveness)

* A simple run

CSE 486/586 23

Problem: Progress (Liveness)

« A problematic run

CSE 486/586 24




Problem: Progress (Liveness)

A problematic run (cont.)

CSE 486/586 25

Problem: Progress (Liveness)

There’s a race condition for proposals.
PO completes phase 1 with a proposal number NO

Before PO starts phase 2, P1 starts and completes
phase 1 with a proposal number N1 > NO.

PO performs phase 2, acceptors reject.

Before P1 starts phase 2, PO restarts and completes
phase 1 with a proposal number N2 > N1.

P1 performs phase 2, acceptors reject.
* ...(this can go on forever)

CSE 486/586

26

Providing Liveness

« Solution: elect a distinguished proposer
— lL.e., have only one proposer
« If the distinguished proposer can successfully

communicate with a majority, the protocol guarantees
liveness.

— l.e., if a process plays all three roles, Paxos can tolerate
failures f< 1/2* N.

« Still needs to get around FLP for the leader election,
e.g., having a failure detector

CSE 486/586 27

Summary

» Paxos

— A consensus algorithm

— Handles crash-stop failures (f < 1/2 * N)
* Three phases

— Phase 1: prepare request/reply

— Phase 2: accept request/reply

— Phase 3: learning of the chosen value

CSE 486/586

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586 29

(¢,



