
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Paxos

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
•  Facebook photo storage

– CDN (hot), Haystack (warm), & f4 (very warm)

•  Haystack
– RAID-6, per stripe: 10 data disks, 2 parity disks, 2 failures

tolerated
– Replication degree within a datacenter: 2
–  4 total disk failures tolerated within a datacenter
– One additional copy in another datacenter
–  Storage usage: 3.6X (1.2X for each copy)

•  f4
– Reed-Solomon code, per stripe: 10 data disks, 4 parity

disks, 4 failures tolerated within a datacenter
– One additional copy XOR’ed to another datacenter
–  Storage usage: 2.1X

2

CSE 486/586

Paxos
•  A consensus algorithm

–  Known as one of the most efficient & elegant consensus
algorithms

–  If you stay close to the field of distributed systems, you’ll
hear about this algorithm over and over.

•  What? Consensus? What about FLP (the
impossibility of consensus)?

– Obviously, it doesn’t solve FLP.
–  It relies on failure detectors to get around it.

•  Plan
–  Brief history (with a lot of quotes)
–  The protocol itself
– How to “discover” the protocol (this is now optional in the

schedule).

3 CSE 486/586

Brief History
•  Developed by Leslie Lamport (from the Lamport

clock)
•  “A fault-tolerant file system called Echo was built at

SRC in the late 80s. The builders claimed that it
would maintain consistency despite any number of
non-Byzantine faults, and would make progress if
any majority of the processors were working.”

•  “I decided that what they were trying to do was
impossible, and set out to prove it. Instead, I
discovered the Paxos algorithm.”

•  “I decided to cast the algorithm in terms of a
parliament on an ancient Greek island (Paxos).”

4

CSE 486/586

Brief History
•  The paper abstract:

–  “Recent archaeological discoveries on the island of Paxos
reveal that the parliament functioned despite the peripatetic
propensity of its part-time legislators. The legislators
maintained consistent copies of the parliamentary record,
despite their frequent forays from the chamber and the
forgetfulness of their messengers. The Paxon parliament’s
protocol provides a new way of implementing the state-
machine approach to the design of distributed systems.”

•  “I gave a few lectures in the persona of an Indiana-
Jones-style archaeologist.”

•  “My attempt at inserting some humor into the subject
was a dismal failure. People who attended my
lecture remembered Indiana Jones, but not the
algorithm.”

5 CSE 486/586

Brief History
•  People thought that Paxos was a joke.
•  Lamport finally published the paper 8 years later in

1998 after it was written in 1990.
–  Title: “The Part-Time Parliament”

•  People did not understand the paper.
•  Lamport gave up and wrote another paper that

explains Paxos in simple English.
–  Title: “Paxos Made Simple”
–  Abstract: “The Paxos algorithm, when presented in plain

English, is very simple.”

•  Still, it’s not the easiest algorithm to understand.
•  So people started to write papers and lecture notes

to explain “Paxos Made Simple.” (e.g., “Paxos Made
Moderately Complex”, “Paxos Made Practical”, etc.)

6

C 2

CSE 486/586

Review: Consensus
•  How do people agree on something?

– Q: should Steve give an A to everybody taking CSE
486/586?

–  Input: everyone says either yes/no.
– Output: an agreement of yes or no.
–  FLP: this is impossible even with one-faulty process and

arbitrary delays.

•  Many distributed systems problems can cast into a
consensus problem

– Mutual exclusion, leader election, total ordering, etc.

•  Paxos
– How do multiple processes agree on a value?
– Under failures, network partitions, message delays, etc.

7 CSE 486/586

Review: Consensus
•  People care about this!
•  Real systems implement Paxos

– Google Chubby
– MS Bing cluster management
–  Etc.

•  Amazon CTO Werner Vogels (in his blog post “Job
Openings in My Group”)

–  “What kind of things am I looking for in you?”
–  “You know your distributed systems theory: You know about

logical time, snapshots, stability, message ordering, but also
acid and multi-level transactions. You have heard about the
FLP impossibility argument. You know why failure detectors
can solve it (but you do not have to remember which one
diamond-w was). You have at least once tried to understand
Paxos by reading the original paper.”

8

CSE 486/586

CSE 486/586 Administrivia
•  PA4 due 5/6 (Friday)
•  Final: Thursday, 5/12, 8am – 11am at Knox 20

9 CSE 486/586

Paxos Assumptions & Goals
•  The network is asynchronous with message delays.
•  The network can lose or duplicate messages, but

cannot corrupt them.
•  Processes can crash.
•  Processes are non-Byzantine (only crash-stop).
•  Processes have permanent storage.
•  Processes can propose values.

•  The goal: every process agrees on a value out of the
proposed values.

10

CSE 486/586

Desired Properties
•  Safety

– Only a value that has been proposed can be chosen
– Only a single value is chosen
–  A process never learns that a value has been chosen unless

it has been
•  Liveness

–  Some proposed value is eventually chosen
–  If a value is chosen, a process eventually learns it

11 CSE 486/586

Roles of a Process
•  Three roles
•  Proposers: processes that propose values
•  Acceptors: processes that accept (i.e., consider)

values
–  “Considering a value”: the value is a candidate for

consensus.
– Majority acceptance à choosing the value

•  Learners: processes that learn the outcome (i.e.,
chosen value)

12

C 3

CSE 486/586

Roles of a Process
•  In reality, a process can be any one, two, or all three.
•  Important requirements

–  The protocol should work under process failures and with
delayed and lost messages.

–  The consensus is reached via a majority (> ½).

•  Example: a replicated state machine
–  All replicas agree on the order of execution for concurrent

transactions
–  All replica assume all roles, i.e., they can each propose,

accept, and learn.

13 CSE 486/586

First Attempt
•  Let’s just have one acceptor, choose the first one that

arrives, & tell the proposers about the outcome.

•  What’s wrong?
–  Single point of failure!

14

P0

P1

P2

A0

V: 0

V: 10

V: 3

CSE 486/586

Second Attempt
•  Let’s have multiple acceptors; each accepts the first

one; then all choose the majority and tell the
proposers about the outcome.

•  What’s wrong? (next slide)
15

P0

P1

P2

A1

A0

A2

V: 0

V: 10

V: 3

CSE 486/586

Second Attempt
•  One example, but many other possibilities

16

P0

P1

P2

A1

A0

A2

V: 0

V: 10

V: 3

CSE 486/586

Paxos
•  Let’s have multiple acceptors each accept (i.e.,

consider) multiple proposals.
–  An acceptor accepting a proposal doesn’t mean it will be

chosen. A majority should accept it.
– Make sure one of the multiple accepted proposals will have

a vote from a majority (will get back to this later)
•  Paxos: how do we select one value when there are

multiple acceptors accepting multiple proposals?

17 CSE 486/586

Paxos Protocol Overview
•  A proposal should have an ID (since there’s multiple).

–  (proposal #, value) == (N, V)
–  The proposal # strictly increasing and globally unique across

all proposers, i.e., there should be no tie.
–  E.g., (per-process number).(process id) == 3.1, 3.2, 4.1, etc.

•  Three phases
–  Prepare phase: a proposer learns previously-accepted

proposals from the acceptors.
–  Propose phase: a proposer sends out a proposal.
–  Learn phase: learners learn the outcome.

18

C 4

CSE 486/586

Paxos Protocol Overview
•  Rough description of the proposers

–  Before a proposer proposes a value, it will ask acceptors if
there is any proposed value already.

–  If there is, the proposer will propose the same value, rather
than proposing another value.

–  Even with multiple proposals, the value will be the same.
–  The behavior is altruistic: the goal is to reach a consensus,

rather than making sure that “my value” is chosen.
•  Rough description of the acceptors

–  The goal for acceptors is to accept the highest-numbered
proposal coming from all proposers.

–  An acceptor tries to accept a value V with the highest
proposal number N.

•  Rough description of the learners
–  All learners are passive and wait for the outcome.

19 CSE 486/586

Paxos Phase 1
•  A proposer chooses its proposal number N and

sends a prepare request to acceptors.
–  “Hey, have you accepted any proposal yet?”

•  Note: Acceptors keep the history of proposals.
•  An acceptor needs to reply:

–  If it accepted anything, the accepted proposal and its value
with the highest proposal number less than N

–  This reply also means a promise to not accept any proposal
numbered less than N any more (to make sure that it doesn’t
alter the result of the reply).

20

P0

N: 4

A0

A1

N: 4

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

CSE 486/586

Paxos Phase 2
•  If a proposer receives a reply from a majority, it

sends an accept request with the proposal (N, V).
–  V: the value from the highest proposal number N from the

replies (i.e., the accepted proposals returned from acceptors
in phase 1)

– Or, if no accepted proposal was returned in phase 1, a new
value to propose.

•  Upon receiving (N, V), acceptors either:
–  Accept it
– Or, reject it if there was another prepare request with N’

higher than N, and it replied to it (due to the promise in
phase 1).

21

P0

(N, V): (4, 10)

A0

A1

(N, V): (4, 10)

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

CSE 486/586

Paxos Phase 3
•  Learners need to know which value has been

chosen.
•  Many possibilities
•  One way: have each acceptor respond to all learners,

whenever it accepts a proposal.
–  Learners will know if a majority has accepted a proposal.
– Might be effective, but expensive

•  Another way: elect a “distinguished learner”
–  Acceptors respond with their acceptances to this process
–  This distinguished learner informs other learners.
–  Failure-prone

•  Mixing the two: a set of distinguished learners

22

CSE 486/586

Problem: Progress (Liveness)
•  A simple run

23

P0

N: 4

A0

A1

N: 4

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P0

(N, V): (4, 10)

A0

A1

(N, V): (4, 10)

CSE 486/586

Problem: Progress (Liveness)
•  A problematic run

24

P0

N: 4

A0

A1

N: 4

P1

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P1

P0

N: 5

A0

A1

N: 5

P1

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P1

C 5

CSE 486/586

Problem: Progress (Liveness)
•  A problematic run (cont.)

25

P0 A0

A1 P1

(N, V): (4, 10)

(N, V): (4, 10)

P0

N: 6

A0

A1

N: 6

P1

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P1

P0 A0

A1 P1

(N, V): (5, 10)

(N, V): (5, 10)

CSE 486/586

Problem: Progress (Liveness)
•  There’s a race condition for proposals.
•  P0 completes phase 1 with a proposal number N0
•  Before P0 starts phase 2, P1 starts and completes

phase 1 with a proposal number N1 > N0.
•  P0 performs phase 2, acceptors reject.
•  Before P1 starts phase 2, P0 restarts and completes

phase 1 with a proposal number N2 > N1.
•  P1 performs phase 2, acceptors reject.
•  …(this can go on forever)

26

CSE 486/586

Providing Liveness
•  Solution: elect a distinguished proposer

–  I.e., have only one proposer

•  If the distinguished proposer can successfully
communicate with a majority, the protocol guarantees
liveness.

–  I.e., if a process plays all three roles, Paxos can tolerate
failures f < 1/2 * N.

•  Still needs to get around FLP for the leader election,
e.g., having a failure detector

27 CSE 486/586

Summary
•  Paxos

–  A consensus algorithm
– Handles crash-stop failures (f < 1/2 * N)

•  Three phases
–  Phase 1: prepare request/reply
–  Phase 2: accept request/reply
–  Phase 3: learning of the chosen value

28

CSE 486/586 29

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

