

CSE 486/586 Distributed Systems Security --- 2

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap

- Three types of functions
 - Cryptographic hash, symmetric key crypto, asymmetric key crypto
- Cryptographic hash
 - Easy to compute $h(m)$
 - Hard to find an m , given $h(m)$
 - Hard to find two values that hash to the same $h(m)$
- How to find collisions?
 - Birthday paradox: for 50% prob. & m bits, $\sim 2^{m/2}$ numbers
- Symmetric key crypto
 - MAC: Compute $H = AES_k(SHA1(M))$ & Send $\langle M, H \rangle$
- Asymmetric key crypto
 - Guarantees rely on computational hardness

CSE 486/586

2

Recap

- MAC
 - Symmetric crypto
 - Verifies the authenticity of a message
 - Sender: `compute H = AES_k(SHA1(M)) & send <M, H>`
 - Receiver: `compute H' = AES_k(SHA1(M)) & check H' == H`
- Digital Signatures
 - Asymmetric crypto
 - Signer: `compute H = RSA_k(SHA1(M)) & send <M, H>`
 - Verifier: `compute H' = RSA_k(H) & verify H' == SHA1(M)`
 - Not just integrity, but also authenticity

CSE 486/586

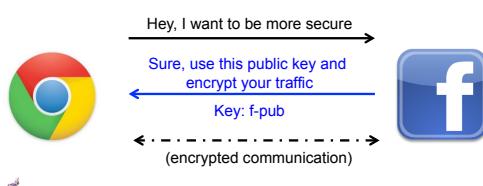
3

Heard of Firesheep?

- Firesheep
 - A Firefox extension
 - A packet sniffer to intercept unencrypted cookies from certain websites (such as Facebook and Twitter)
 - Allows the user to take on the log-in credentials of the victim
- Solution?
 - Encrypt your traffic!
 - This is before facebook started using https, but now facebook uses https.

CSE 486/586

4


“Securing” HTTP

- Threat model
 - Eavesdropper listening on conversation (confidentiality)
 - Man-in-the-middle modifying content (integrity)
 - Adversary impersonating desired website (authentication, and confidentiality)
- Enter HTTP-S
 - HTTP sits on top of secure channels
 - All (HTTP) bytes written to secure channel are encrypted and authenticated

CSE 486/586

5

Encrypted Communication

- What is wrong with this?
 - How do you know you're actually talking to facebook and f-pub belongs to facebook?

CSE 486/586

6

Digital Certificates

- A **digital certificate** is a statement signed by a third party principal, and can be reused
 - e.g., Verisign Certification Authority (CA)
- To be useful, certificates must have:
 - A standard format, for construction and interpretation
 - A protocol for constructing chains of certificates
 - A trusted authority at the end of the chain
- Example
 - When facebook sends you the public key, it also sends a signature for the public key signed by Verisign.
 - You pre-store Verisign's public keys & certificates (self-signed by Verisign), i.e., you have already established trust with Verisign.
 - Use Verisign's public key to verify facebook's public key.

CSE 486/586

7

On My Mac...

CSE 486/586

8

X.509 Certificates

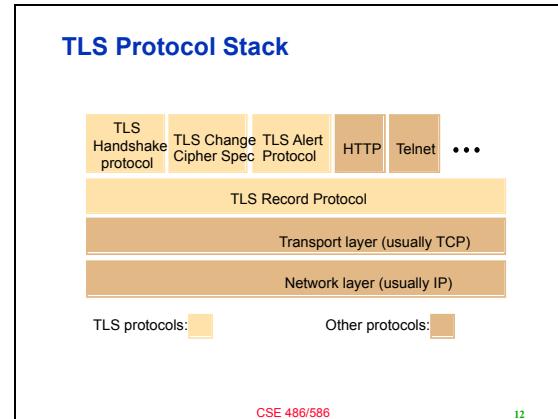
- The most widely used standard format for certificates
- Format
 - **Subject:** Distinguished Name, Public Key
 - **Issuer:** Distinguished Name, Signature
 - **Period of validity:** Not Before Date, Not After Date
 - **Administrative information:** Version, Serial Number
 - **Extended information**
- Binds a public key to the subject
 - A subject: person, organization, etc.
- The binding is in the signature issued by an issuer.
 - You need to either trust the issuer directly or indirectly (by establishing a *root of trust*).

CSE 486/586

9

X.509 Certificates

CSE 486/586

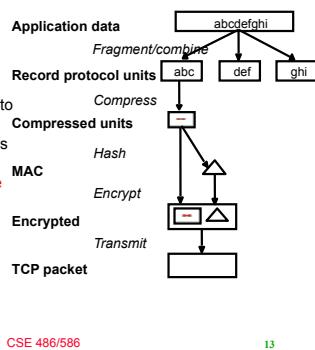

10

Transport Layer Security (TLS)

- **SSL (Secure Socket Layer)** was developed by Netscape for electronic transaction security.
- SSL was adopted as **TLS** as an Internet standard.
- A protocol layer is added below the application layer for:
 - Negotiating encryption and authentication methods.
 - Bootstrapping secure communication
- It consists of two layers:
 - The **Record Protocol Layer** implements a secure channel by encrypting and authenticating messages
 - The **Handshake Layer** establishes and maintains a secure session between two nodes.

CSE 486/586

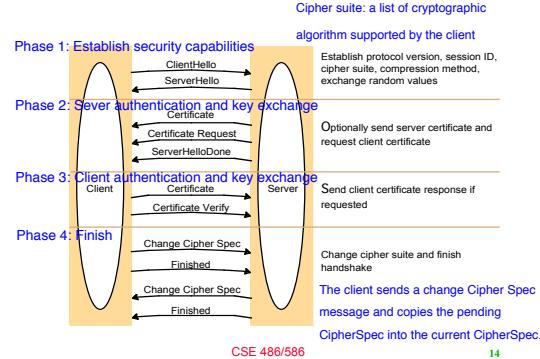
11



CSE 486/586

12

TLS Record Protocol


- The record protocol takes an application message to be transmitted,
 - fragments the data into manageable blocks,
 - optionally compresses the data,
 - computes a message authentication code (MAC),
 - encrypts and
 - adds a header.

CSE 486/586

13

TLS Handshake Protocol

CSE 486/586

14

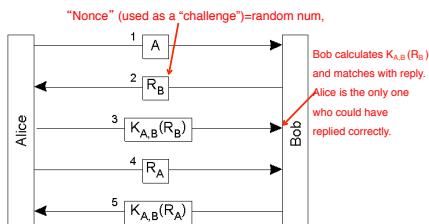
CSE 486/586 Administrivia

- PA4 due Friday next week
- Final: 5/12 (Thursday), 8am – 11am @ Knox 20

CSE 486/586

15

Authentication

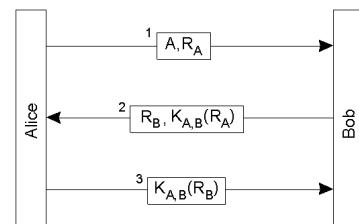

- Use of cryptography to have two **principals** verify each others' identities.
 - Direct authentication:** the server uses a shared secret key to authenticate the client.
 - Indirect authentication:** a trusted **authentication server** (third party) authenticates the client.
 - The **authentication server** knows keys of principals and generates temporary shared key (**ticket**) to an authenticated client. The ticket is used for messages in this session.
 - E.g., Verisign servers

CSE 486/586

16

Direct Authentication

- Authentication with a secret key

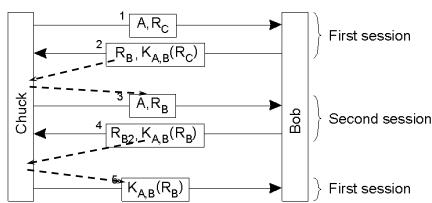


CSE 486/586

17

"Optimized" Direct Authentication

- Authentication with a secret key with three messages



• Anything wrong with this?

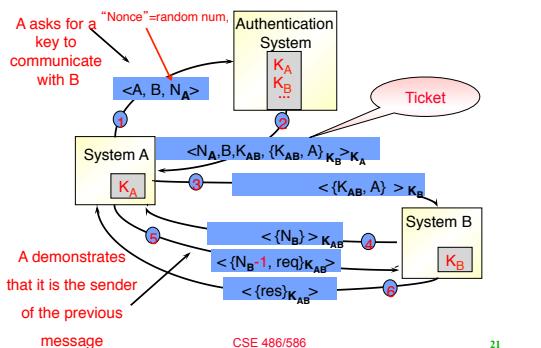
CSE 486/586

18

Reflection Attack

CSE 486/586

19

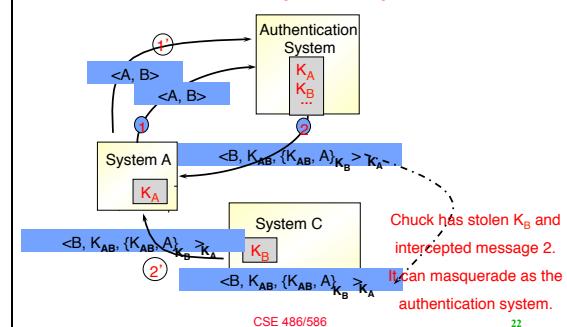

Needham-Schroeder Authentication

- An **authentication server** provides secret keys.
 - Every client shares a secret key with the server to encrypt their channels.
- If a client A wants to communicate with another client B,
 - The server sends a key to the client A in **two forms**.
 - First, **in a plain form**, so that the client A can use it to encrypt its channel to the client B.
 - Second, **in an encrypted form** (with the client B's secret key), so that the client B can know that the key is valid.
 - The client A sends this encrypted key to the client B as well.
- Basis for Kerberos

CSE 486/586

20

Needham-Schroeder Authentication



CSE 486/586

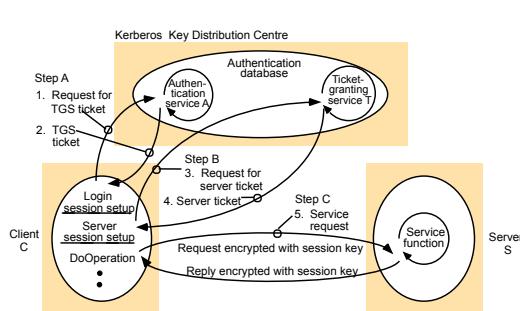
21

Nonce N_A in Message 1

Because we need to relate message 2 to message 1

CSE 486/586

22


Kerberos

- Follows Needham-Schroeder closely
- Time values used for nonces
 - To prevent replay attacks
 - To enforce a lifetime for each ticket
- Very popular
 - An Internet standard
 - Default in MS Windows

CSE 486/586

23

Kerberos

CSE 486/586

24

Summary

- Digital certificates
 - Binds a public key to its owner
 - Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

CSE 486/586

25

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Jennifer Rexford (Princeton) and Michael Freedman (Princeton).

CSE 486/586

26