CSE 486/586 Distributed Systems
Global States

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

+ Ordering of events

— Many applications need it, e.g., collaborative editing,
distributed storage, etc.

« Logical time
— Lamport clock: single counter
— Vector clock: one counter per process
— Happens-before relation shows causality of events

« Today: An important algorithm related to the
discussion of time

CSE 486/586

Today’s Question

« Example question: who has the most friends on
Facebook?

» Challenges to answering this question?

— It changes!
)/

* What do we need?
— A snapshot of the social network graph at a particular time

CSE 486/586

Today’s Question

« Distributed debugging

Both waiting.. .

Deadlock!

* How do you debug this?
— Log in to one machine and see what happens
— Collect logs and see what happens
— Taking a global snapshot!

CSE 486/586

What is a Snapshot?

« Single process snapshot

« Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

« Multi-process snapshot
« Snapshots of all process states
« Network snapshot: All messages in the network

CSE 486/586

What Do We Want?

A“cut”’
P1 el e el e’
%
P2 \fZU / \ezz
P3 e ey’ €2

» Would you say this is a good snapshot?
— “Good": we can explain all the causality, including messages
— No because e,' might have been caused by e,'.
* Three things we want.
— Per-process state
— Messages that are causally related to each and every local
snapshot and in flight
— All events that happened before each event in the snapshot
CSE 486/586

6

Obvious First Try

» Synchronize clocks of all processes

— Ask all processes to record their states at known time ¢
* Problems?

— Time synchronization possible only approximately

— Another issue?

— Does not record the state of messages in the channels

« Again: synchronization not required — causality is
enough!

» What we need: logical global snapshot
— The state of each process
— Messages in transit in all communication channels

CSE 486/586 7

How to Do It? Definitions '

b Cate o4 N
NS
NA N\

P3

ey e’ e’
« Fora process P,;, where events e?, e/, ... occur,
« history(P) = h;=<ef e, ... >
« prefix history(Pf) = hf=<ep, e/,ef >
« Sk:P;’s state immediately after k' event
« Foraset of processes P, ...,P;,:
« Global history: H = U, (h)
« Global state: S = U, (Sf)
« AcutCCH=ho" Uhf U... U@
« The frontierof C={ef i=1,2, ...n}

CSE 486/586 8

Consistent States

« Acut Cis consistent if and only if
* V,cc(iff >ethenfeC)

« Aglobal state S is consistent if and only if
« it corresponds to a consistent cut

& Ve
el el / e? e’
o @ ‘ AN
SN N\ A
e,
P2 - 3
‘\EZU / X
re
P3 e,0 ey’ €2
‘ Inconsistent cut ‘ ‘ Consi cut ‘
CSE 486/586 9

Why Consistent States?

« #1: For each event, you can trace back the causality.
» #2: Back to the state machine (from the last lecture)

— The execution of a distributed system as a series of
transitions between global states: SO > S1 > S2 > ...

— ...where each transition happens with one single action from
a process (i.e., local process event, send, and receive)

— Each state (S0, S1, S2, ...) is a consistent state.

CSE 486/586 10

CSE 486/586 Administrivia

» PA2-A deadline: This Friday
* Please come and ask questions during office hours.

CSE 486/586 1

The Snapshot Algorithm: Assumptions

There is a communication channel between each pair
of processes (@each process: N-1in and N-1 out)

Communication channels are unidirectional and
FIFO-ordered (important point)

No failure, all messages arrive intact, exactly once
Any process may initiate the snapshot
Snapshot does not interfere with normal execution

Each process is able to record its state and the state
of its incoming channels (no central collection)

CSE 486/586 12

Ny

Single Process vs. Multiple Processes

« Single process snapshot

« Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

« Multi-process snapshot

« Snapshots of all process states

« Network snapshot: All messages in the network
* Two questions:

« #1: When to take a local snapshot at each process so that
the collection of them can form a consistent global state?
(Process snapshot)

« #2: How to capture messages in flight? (Network snapshot)

CSE 486/586 13

The Snapshot Algorithm

« Clock-synced snapshot (instantaneous snapshot)
— Process snapshots and network messages at time t

* Need to capture:
— Local snapshots of P1 & P2

— Messages in the network (message a, since message a is
causally related to P2’s snapshot)

« We can’t quite do it due to (i) imperfect clock sync
and (ii) no help from the network.

72

CSE 486/586 14

The Snapshot Algorithm

« Logical snapshot (not instantaneous)
— Goal: capturing causality (events and messages)

— A process tells others to take a snapshot by sendin
message (see the diagram). But there’s a delay in doing so.

— Need to capture all network messages during the delay (not
at an instantaneous moment)

« We need to capture:

— Local snapshots of P1 & P2 (same as before but now at two
different times).

— Messages in flight that are causally related to each and
every local snapshot, e.g., messages a and b for P2’s
snapshot.

— How?

P1 . f/’
P2 < - .
CSE 486/586 15

The Snapshot Algorithm

* P1 needs to record all causally-related messages.
— All the messages already in the network.
— All the messages sent during the delay.

* For messages already in the network,

— P1 starts recording as soon as it sends a marker, since the
messages already in the network will arrive to P1 eventually.

» For messages sent during the delay,

— P2 sends a marker again to tell P1 that a local snapshot has
been taken. This marks the end of the delay.

— FIFO ensure that the marker is the last message received.
P1 . %
P2 - .

CSE 486/586 16

The Snapshot Algorithm

« Basic idea: marker broadcast & recording

— The initiator broadcasts a “marker” message to everyone
else

— If a process receives a marker for the first time, it takes a
local snapshot, starts recording all incoming messages, and
broadcasts a marker again to everyone else.

— A process stops recording for each channel, when it
receives a marker for that channel.

P1 *

P2

P3

CSE 486/586 17

The Snapshot Algorithm

1. Marker sending rule for initiator process P,
« After P, has recorded its own state

« for each outgoing channel C, send a marker message
onC

2. Marker receiving rule for a process P,
on receipt of a marker over channel C

« if P, has not yet recorded its own state
« record P,’s own state
« record the state of C as “empty”
« for each outgoing channel C, send a marker on C
« turn on recording of messages over other incoming channels

* else
« record the state of C as all the messages received over C

since P, saved its own state; stop recording state of C

CSE 486/586 18

Chandy and Lamport’s Snapshot

Marker receiving rule for process p;
On p;’s receipt of a marker message over channel c:
if (p; has not yet recorded its state) it
records its process state now;
records the state of ¢ as the empty set;
turns on recording of messages arriving over other incoming channels;
else
p; records the state of ¢ as the set of messages it has received over ¢
since it saved its state.
end if
Marker sending rule for process p;
After p; has recorded its state, for each outgoing channel c:
p; sends one marker message over ¢
(before it sends any other message over c).

CSE 486/586 19

Exercise

P1

P2

P3
€3 e e

1- P1 initiates snapshot: records its state (81); sends
turns on recording for channels C21 and C31

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

3- P1 receives Marker over C21, sets state(C21) = {a}

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

5- P2 receives Marker over C32, sets state(C32) = {b}

6- P3 receives Marker over C23, sets state(C23) = {}

7- P1 receives Marker over C31, sets state(C31) = {}

3
Markers to P2 & P3;

CSE 486/586 20

One Provable Property

« The snapshot algorithm gives a consistent cut
* Meaning,

— Suppose €; is an event in P, and e; is an event in P,

- Ife> e;, and g is in the cut, then e is also in the cut.
» Proof sketch: proof by contradiction

— Suppose e is in the cut, but e; is not.

— Since g > ¢; there must be a sequence M of messages
that leads to the relation.

Since e, is not in the cut (our assumption), a marker
should’ve been sent before e;, and also before all of M.

— Then P; must've recorded a state before e;, meaning, e; is
not in the cut. (Contradiction)

CSE 486/586

Summary

* Global states
— A union of all process states
— Consistent global state vs. inconsistent global state
* The “snapshot” algorithm
« Take a snapshot of the local state
« Broadcast a “marker” msg to tell other processes to record

« Start recording all msgs coming in for each channel until
receiving a “marker”

« Outcome: a consistent global state

CSE 486/586

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

CSE 486/586 23

