CSE 486/586 Distributed Systems
Security --- 1

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Security Threats

* Leakage: An unauthorized party gains access to a
service or data.

¢ Attacker obtains knowledge of a withdrawal or account
balance

* Tampering: Unauthorized change of data, tampering
with a service

* Attacker changes the variable holding your personal
checking $$ total

* Vandalism: Interference with proper operation,
without gain to the attacker

* Attacker does not allow any transactions to your account

CSE 486/586

¥ Security Properties

Confidentiality: Concealment of information or
resources

Authenticity: Identification and assurance of origin of
info

Integrity: Trustworthiness of data or resources in
terms of preventing improper and unauthorized
changes

Availability: Ability to use desired info or resource

Non-repudiation: Offer of evidence that a party
indeed is sender or a receiver of certain information

Access control: Facilities to determine and enforce

who is allowed access to what resources (host,
software, network, ...)

CSE 486/586 3

¥ Attack on Confidentiality

« Eavesdropping
— Unauthorized access to information
— Packet sniffers and wiretappers (e.g. tcpdump)
— lllicit copying of files and programs

S

Eavesdropper

CSE 486/586

_# Attack on Integrity

» Tampering
— Stop the flow of the message
— Delay and optionally modify the message
— Release the message again

—

Perpetrator

CSE 486/586 5

¥ Attack on Authenticity

« Fabrication
— Unauthorized assumption of other’s identity
— Generate and distribute objects under identity

—

Masquerader: from A

CSE 486/586

¥ Attack on Availability

« Destroy hardware (cutting fiber) or software
* Modify software in a subtle way
« Corrupt packets in transit

« Blatant denial of service (DoS):
— Crashing the server
— Overwhelm the server (use up its resource)

CSE 486/586 7

Designing Secure Systems

* Your system is only as secure as your weakest
component!

Need to make worst-case assumptions about
attackers:

— exposed interfaces, insecure networks, algorithms and
program code available to attackers, attackers may be
computationally very powerful

— Tradeoff between security and performance impact/difficulty

— Typically design system to withstand a known set of attacks
(Attack Model or Attacker Model)

It is not easy to design a secure system.
And it's an arms race!

CSE 486/586 8

CSE 486/586 Administrivia

* Final: 5/18/2017, Thursday, 6 pm — 8 pm, Knox 110
* PA4 due on 5/12/2017 at 12 pm.

CSE 486/586 9

Cryptography

« Comes from Greek word meaning “secret”
— Primitives also can provide integrity, authentication
« Cryptographers invent secret codes to attempt to
hide messages from unauthorized observers
encryption decryption
plaintext —— ciphertext —— plaintext
* Modern encryption:
— Algorithm public, key secret and provides security
— May be symmetric (secret) or asymmetric (public)
« Cryptographic algorithms goal
— Given key, relatively easy to compute
— Without key, hard to compute (invert)
— “Level” of security often based on “length” of key

CSE 486/586 10

Three Types of Functions

« Cryptographic hash Functions
— Zero keys

« Secret-key functions
— One key

» Public-key functions
— Two keys

CSE 486/586 11

Cryptographic Hash Functions

- Take message, m, of arbitrary length and produces a
smaller (short) number, h(m)
« Properties
— Easy to compute h(m)
— Pre-image resistance (strong collision): Hard to find an m,
given h(m)
» “One-way function”
— Second pre-image resistance (weak collision): Hard to find
two values that hash to the same h(m)
» E.g. discover collision: h(m) == h(m’) form!=m’
— Often assumed: output of hash fn’s “looks” random

s * What's wrong with collisions?

— E.g., message authentication (MAC) (will discuss later).

CSE 486/586 12

How Hard to Find Collisions?

¥+ Think like an attacker. What would be the simplest
’ strategy to try?

— Brute-force trials.

— Then the question is how many trials do we need?

— The “strength” of your crypto hash depends on how hard it is
to find out collisions.

5 « Birthday paradox

— In a set of n random people, what'’s the probability of two
people having the same birthday?

* What's the similarity between this and the crypto
hash collision?
 Calculation
— Compute probability of different birthdays
— Random sample of n people taken from k=365 days

CSE 486/586 13

Birthday Paradox

« Probability of no repetition:

—P=1-(1)(1-1/365) (1 - 2/365) (1 - 3/365) ... (1 — (n-
1)/365)

— (k = # of slots, e.g., 365) P = 1— e (n(n-1)/2k

— For p, it takes roughly sqrt(2k * In(1/(1-p))) people to find two
people with the same birthday.

© Withp=50%, ' e

CSE 486/586 14

How Many Bits for Hash?

« If m bits, how many numbers do we need to find
(weak) collision?

— It's not 2™+ 1!
— It takes 2™2 to find weak collision (with high probability)
— Sttill takes 2™ to find strong (pre-image) collision

« 64 bits, takes 232 messages to search

MD5 (128 bits) considered too little

SHA-1 (160 bits) getting old

CSE 486/586 15

Example: Password

« Password hashing
— Can't store passwords in a file that could be read
— Concerned with insider attacks!

« Must compare typed passwords to stored passwords
— Does hash (typed) === hash (password)?

« Actually, a salt is often used: hash (input || salt)

— Avoids precomputation of all possible hashes in “rainbow
tables” (available for download from file-sharing systems)

CSE 486/586 16

Symmetric (Secret) Key Crypto

« Also: “conventional / private-key / single-key”
— Sender and recipient share a common key
— All classical encryption algorithms are private-key

— Dual use: confidentiality (encryption) or
authentication/integrity (message authentication code)

« Was only type of encryption prior to invention of
public-key in 1970’s
— Most widely used
— More computationally efficient than “public key”

CSE 486/586 17

Symmetric Cipher Model

Secret key shared by Secret key shared by

sender and recipient sender and

i i

pient

Transmitted

) ciphertext -
u /N e

h 4
v

Plaintext Plaintext

Encryption algorithm Decryption algorithm

input output

(reverse of encryption
algorithm)

CSE 486/586 18

Requirements

« Two requirements
— Strong encryption algorithm
— Secret key known only to sender/receiver
« Goal: Given key, generate 1-to-1 mapping to
ciphertext that looks random if key unknown
— Assume algorithm is known (no security by obscurity)
— Implies secure channel to distribute key

CSE 486/586 19

Uses

+ Encryption
— For confidentiality
— Sender: Compute C = AES,(M) & Send C
— Receiver: Recover M = AES’ ((C)
* Message Authentication Code (MAC)
— For integrity and authenticity
— Sender: Compute H = AES(SHA1 (M)) & Send <M, H>
— Receiver: Computer H' = AES,(SHA1 (M)) & Check H’ ==

CSE 486/586 20

Public (Asymmetric) Key Crypto

« Developed to address two key issues
— Key distribution: secure communication without having to
trust a key distribution center with your key
— Digital signature: verifying that a message comes from the
claimed sender without prior establishment

 Public invention Diffie & Hellman in 1976
— Known earlier to classified community

CSE 486/586 21

Public (Asymmetric) Key Crypto

« Involves two keys
— Public key: can be known to anybody, used to encrypt and
verify signatures
— Private key: should be known only to the recipient, used to
decrypt and sign signatures
* Asymmetric
— Can encrypt messages or verify signatures w/o ability to
decrypt msgs or create signatures

— If “one-way function” goes ¢ < F(m), then public-key
encryption is a “trap-door” function:

» Easy to compute ¢ < F(m)
» Hard to compute m € F(c) without knowing k
» Easy to compute m € F(ck) by knowing k
CSE 486/586 22

Public (Asymmetric) Key Crypto

Bobs's
public key

¢

Mike Alice

Alice’s public Alice's private
key key
Transmitted
ciphertext
> >
Plaintext Plaintext
input Encryption algorithm Decryption algorithm outout
(e.g. RSA) (reverse of encryption

algorithm)

CSE 486/586 23

Security of Public Key Schemes

« Like private key schemes, brute force search
possible

— But keys used are too large (e.g., >= 1024 bits)

« Security relies on a difference in computational
difficulty b/w easy and hard problems
— RSA: exponentiation in composite group vs. factoring

— ElGamal/DH: exponentiation vs. discrete logarithm in prime
group
— Hard problems are known, but computationally expensive

« Requires use of very large numbers

— Hence is slow compared to private key schemes

— RSA-1024: 80 us / encryption; 1460 us / decryption
[cryptopp.com]
— AES-128: 109 MB/sec = 1.2us / 1024 bits

CSE 486/586 24

(Simple) RSA Algorithm

« Security due to cost of factoring large numbers

— Factorization takes O(e '°9 " leglogn) operations (hard)

— Exponentiation takes O((log n)®) operations (easy)
» To encrypt a message M the sender:

— Obtain public key {e,n}; compute C =M mod n
« To decrypt the ciphertext C the owner:

— Use private key {d,n}; computes M =C%mod n
* Note that msg M must be smaller than the modulus n
« Otherwise, hybrid encryption:

— Generate random symmetric key r

— Use public key encryption to encrypt r

— Use symmetric key encryption under r to encrypt M

CSE 486/586

™
b

Typical Applications

« Secure digest (with cryptographic hash functions)

— A fixed-length that characterizes an arbitrary-length
message

— Typically produced by cryptographic hash functions, e.g.,
SHA-1 or MD5.
« Digital signature with asymmetric crypto

— Verifies a message or a document is an unaltered copy of
one produced by the signer

— Signer: compute H = RSA((SHA1(M)) & send <M, H>
— Verifier: compute H' = SHA1(M) & verify RSA,(H) == H’

CSE 486/586 26

Summary

» Security properties

— Confidentiality, authenticity, integrity, availability, non-
repudiation, access control

» Three types of functions

— Cryptographic hash, symmetric key crypto, asymmetric key
crypto

« Applications
— Secure digest, digital signature, MAC, digital certificate

CSE 486/586 27

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC), Jennifer
Rexford (Princeton) and Michael Freedman
(Princeton).

CSE 486/586 28

