First Things

- Instructor
 - Steve Ko
 - 9th year at UB
- TAs
 - Harishankar Vishwanathan
 - Archita Pathak
 - Yuyang Chen
 - Hanbin Zhang
- Add/drop
 - Help your fellow students and make up your mind by Thursday (and drop if that’s your decision).
 - On Friday, if necessary, I will increase the cap
 - Please don’t email me for force registration until Friday night.

Welcome to CSE 486/586

- Why do you want to take this course?
- Some positive feedback of this course...
 - “(CSE 486/586) didn’t only helped with understanding the concepts involved, but have also always given me something cool and interesting to talk about in interviews.”
 - “I am actually learning new things.”
 - “(CSE 486/586) literally got me a job.”
- Some negative feedback of this course...
 - “Projects are a bit too much on the difficult side.”
 - “The midterm came almost out of nowhere.”
 - “Stay away at all cost!”
- Are you ready? ;-)
Why Is It Hard to Build One?

- **Scale**: hundreds or thousands of machines
 - Google: 4K-machine MapReduce cluster
 - Yahoo!: 4K-machine Hadoop cluster
 - Akamai: 70K machines distributed over the world
 - Facebook: 60K machines providing the service
 - Hard enough to program one machine!
- **Dynamism**: machines do fail!
 - 50 machine failures out of 20K machine cluster per day (reported by Yahoo!)
 - 1 disk failure out of 16K disks every 6 hours (reported by Google)
- As we will learn, these come with:
 - Concurrent execution, consistency, etc.

OK; But Who Cares?

- This is where all the actions are!
 - What is the two biggest driving forces in the computing industry for the last 7-8 years?
 - It's the cloud!
 - And smartphones!
 - They are distributed!
 - (And there's also machine learning, robotics, etc.)
- Now --- it's all about distributed systems!
 - Well...with a bit of exaggeration... ;-)
Academic Integrity Policies

• Academic integrity: exams, HW, and code
 – Copying others’ code: no
 – Copying from other sources (the Web, books, etc.): get permission
 – Exceptions: http://developer.android.com (copy freely, but mark clearly that you copied)
 – http://stackoverflow.com (generally OK to see how things get done, but do not copy and paste.)
 – If found, the incident will be reported to the university.
• Will use an automatic similarity checker.
 – When similar submissions are found, both will get an F for the entire semester.
• Please be careful when using an online code repository, e.g., GitHub, BitBucket, etc.

For Undergraduates

• We do have recitations.
• But it’s just like office hours, dedicated for undergraduates.

Background Required

• You must have some background in different topics.
• OS concepts
 – Threads, processes, synchronization (e.g., locks, semaphores), etc.
• Networking concepts
 – IP, DNS, NAT (e.g., private IPs vs. public IPs), TCP, etc.
• System programming experiences
 – Programming experiences with sockets, processes, threads, synchronization primitives, file I/O, etc.
 – Experiences with setting up environment variables, using regex, scripting (e.g., bash, python, etc.)
• Programming environment
 – Linux or Mac

Background Check: PA1

• Programming Assignment (PA) 1
 – Use this as a background check.
 – If you can finish this in a week all by yourself, then you are ready to take this class.
 – See for yourself!
 – Due on next Friday (2/8) 11:59:59 am.
• SimpleMessenger on Android
 – Overall, need to implement a chatting app.
 – Need to set up the Android programming environment.
 – Need to use sockets.
 – Need to understand the code provided.
 – Need to read Android tutorials and understand them.
 – Need to understand and use Android APIs.

How Can I Reach the Teaching Staff?

• Steve: 113F Davis
 – Lectures (MWF 1:00 pm-1:50 pm)
 – Office hours (TBD)
• TAs
 – Office hours: Posted on Piazza
 – Please do not expect that the TAs will stay more than the announced office hours.
• Use Piazza (http://piazza.com/class), instead of email, mailing list, blog, etc.
 – The teaching staff will not have any activity during weekends and holidays.
 – Signup link: http://piazza.com/buffalo/spring2019/cse486586
 – http://www.cse.buffalo.edu/~stevko/courses/cse486/spring19/

What Exactly Am I Going to Learn? Distributed Systems 10 Questions!

• Course goal: answering 10 questions on distributed systems
 – At the end of the semester, if you can answer only 10 questions about distributed systems, you’ll probably get an A.
 – Easy enough!
• What are those questions?
 – Organized in 6 themes
 – 1~2 questions in each theme
 – A few (or several) lectures to answer each question
Theme 1: Communications

- Q1: how do you talk to another machine?
 - Networking basics
- Q2: how do you talk to multiple machines at once?
 - Multicast
- Q3: can you call a function/method/procedure running in another machine?
 - RPC

Theme 2: Concurrency

- Q4: how do you control access to shared resources?
 - Distributed mutual exclusion, distributed transactions, 2-phase commit, etc.

Theme 3: Consensus

- Q5: how do multiple machines reach an agreement?
 - Time & synchronization, global states, snapshots, mutual exclusion, leader election, paxos
 - Bad news: it’s impossible!
 - The impossibility of consensus
Theme 4: Hint

Who has a brain?
I do.
I don’t.

Theme 4: Storage Management

Q6: how do you locate where things are and access them?
- DHT, DFS

Theme 5: Hint

I have a feeling that something went wrong…
ZZZ…

Theme 5: Non-Byzantine Failures

Q7: how do you know if a machine has failed?
- Failure detection
Q8: how do you program your system to operate continually even under failures?
- Replication, gossiping

Theme 6: Hint

We’re under attack!

Theme 6: Byzantine Failures

Q9: how do you deal with attackers?
- Security
Q10: what if some machines malfunction?
- Byzantine fault tolerance
Acknowledgements

- These slides heavily contain material developed and copyrighted by Indranil Gupta at UIUC.
- The material was originally developed for courses CS425/CSE424/ECE428 at UIUC.