CSE 486/586 Distributed Systems
The Internet in 2 Hours:
The Second Hour

Steve Ko
Computer Sciences and Engineering
University at Buffalo

Recap
• The Internet
 – A network of networks
 – A case study as a distributed system
• Protocol
 – An agreement between multiple parties
 – Syntax & semantics
• Design a system
 – Why, what, and how
• The Internet
 – Connecting by layering

Layering: A Modular Approach
• Sub-divide the problem
 – Each layer relies on services from layer below
 – Each layer exports services to layer above
• Interface between layers defines interaction
 – Hides implementation details
 – Layers can change without disturbing other layers
• “The” computer science approach
 – ISA, OS, networking...

We Must Ask Ourselves...
• In a conversation, there are two components involved
 – Hosts
 – Network
• So, one more question: how do you decide who does what? More specifically, what would be a good network/host division of labor?
• Addressing and routing?
 – Yeah, probably in the network
• What about conversation protection mechanisms?
 – The network or hosts?

Challenges in Layering
• What to put on top of physical networks?
• Assumption (for the sake of the discussion):
 – Packet switching (a conversation is divided into smaller units called packets).
• Basic things for enabling a conversation between remote hosts:
 – Addressing (where do I send a msg?)
 – Routing (how do I reach that address?)
• Most importantly, survivability
 – Protection of a conversation as long as there’s a physical path between entities communicating and they are alive.
• What are some of the threats that disrupt a conversation?
 – Packet loss, out-of-order delivery, duplicate packets, etc.

So, How to Protect a Conversation?
• Think about the following scenario
 – Hey!
 – The Internet
 – Hey!
Two Approaches to Survivability

• Approach 1: “stateful” network
 – The network keeps the state information about conversations

The Internet

Hey!

OK, Bob is sending something to Alice.

I'd better keep another copy in case it gets lost...

Two Approaches to Survivability

• Approach 2: “stateless” network
 – The ends keep the state information about conversations

The Internet

Hey!

(and let me know if you receive this)

The Internet

(OK; Alice didn't speak to me for a while. I'll send it again.)

Two Approaches to Survivability

• Stateless networks’ principle: fate-sharing
 – The conversation shares the same fate with the “ends.”
 – “It is acceptable to lose the state information associated with an entity if, at the same time, the entity itself is lost.”

• Advantages
 – Fate-sharing protects against any number of intermediate network failures (what about replication?)
 – Fate-sharing is much easier to engineer.

• The result: a “best-effort” network
 – The IP (Internet Protocol) layer doesn’t really provide anything other than “best-effort” delivery (i.e., addressing and routing).
 – The end hosts provide conversation protection mechanisms.

The Internet Protocol Suite

Applications
UDP, TCP

Data Link

The Hourglass Model

End-to-End Arguments

• Helps resisting the tendency to put and hide complicated things in the lower layers

• If a functionality must be implemented end-to-end, then don’t implement it in the network.
 – Exception: when there are clear performance improvements

• Laid out in “End-to-End Arguments in System Design” by J.H. Saltzer, D.P. Reed and D.D. Clark (optional reading)

• A good rule of thumb in any system design, but still not something to follow blindly
CSE 486/586 Administrivia

- PA 1
 - Please try it out right away and see how far you can get.
- Please use Piazza; all announcements will go there.

TCP/IP

- IP “best-effort” network
 - The network knows the source and the destination.
 - A conversation is divided into packets.
 - Makes the best effort to deliver packets
 - Packet loss, corruption, out-of-order delivery, etc. could all happen.
- TCP (Transmission Control Protocol)
 - Handles the problems
 - Implemented at the end hosts

OK; Let’s Think about It Together…

- Is this always a good thing?
- Is today’s Internet still stateless?

TCP

- An end-to-end protocol
- Protects conversations
 - Receiver is supposed to send an ack (acknowledgement) packet.
 - Packet loss → retransmission
 - Out-of-order delivery, duplicate packets → sequence numbers
 - Packet corruption → checksum
- Controls congestion
 - The network might be over-utilized
 - Prevents the network from collapsing (which was actually a concern in the late 80’s)
- TCP is an abstraction: a reliable, byte-stream connection

A (Very) Brief Overview of TCP

- Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgment (SYN ACK)
 - Host A sends an ACK to acknowledge the SYN ACK
- Why 3-way instead of 2-way?
 - Reachability

Retransmission

- Timeout & retransmission to handle packet loss
The Dark Side of TCP

- There’s overhead associated:
 - Connection establishment: 3-way handshake
 - Packet loss: retransmission timeout
 - Congestion control: doesn’t utilize full bandwidth
- More importantly, some applications do not need these.
- Examples?
- So, enter UDP (User Datagram Protocol): exposes almost exactly what IP can give you.

Why Would Anyone Use UDP?

- Fine control over what data is sent and when
 - As soon as an application process writes
 - … UDP will package the data and send the packet
- No delay for connection establishment
 - UDP just blasts away without any formal preliminaries
 - … which avoids introducing any unnecessary delays
- No connection state
 - No allocation of buffers, parameters, sequence #s, etc.
 - … making it easier to handle many active clients at once
- Small packet header overhead
 - UDP header is only eight-bytes long

Popular Applications That Use UDP

- Multimedia streaming
 - Retransmitting lost/corrupted packets is not worthwhile
 - By the time the packet is retransmitted, it’s too late
 - E.g., telephone calls, video conferencing, gaming
- Simple query protocols like Domain Name System
 - Overhead of connection establishment is overkill
 - Easier to have the application retransmit if needed
 - Will cover this in a separate lecture

What Applications See

```
Address for www.cnn.com?
```

Summary

- What to put on top of physical networks?
 - Layers providing survivability
- Where to put functionalities?
 - Fate-sharing & end-to-end arguments
 - IP layer doesn’t provide much
 - TCP handles most of the survivability issues
- TCP & UDP: the two transport protocols of the Internet
- What interface do applications see?
 - Socket API
- Next: An introduction to Android programming

Acknowledgements

- These slides contain material developed and copyrighted by
 - Indranil Gupta at UIUC
 - Mike Freedman and Jen Rexford at Princeton