CSE 486/586 Distributed Systems
Logical Time

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

 Clock skews do happen
« Cristian’s algorithm

— One server

— Server-side timestamp and one-way delay estimation
* NTP (Network Time Protocol)

— Hierarchy of time servers

— Estimates the actual offset between two clocks

— Designed for the Internet

CSE 486/586 2

Then Came a Breakthrough...

» We cannot sync multiple clocks perfectly.

, 7. But why did we want to synchronize clocks in the first
place?

Then Came a Breakthrough...

« If we just want to order events happened at different
processes, we don’t need to synchronize physical
clocks.

* We just need to be able to determine the ordering.

 So the concept of logical time:
— First proposed by Leslie Lamport in the 70’s
— Based on causality of events
— Defined relative time, not absolute time

« Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive

CSE 486/586 3
Abstract View
P1
a b\

P2 W . Physical
c d m, time

P3

e f

» Background: we’ll think of a program as a collection
of actions: instruction, send, and receive events.

» Above is what we will deal with most of the time.
— This is the execution view of a distributed system.
» Ordering question: what do we ultimately want?
— Taking two events andcggtﬁgg)&i)gg the ordering of the two.

messages.
CSE 486/586 4
What Ordering?
P1
a b\
P2 W - Physical
time

c d m,

P3

e f

) ¥« What kind of orderings can we determine right away?
— Events in the same process
— Send/receive events

CSE 486/586 6

Lamport Timestamps

» Goal: take any two events, and determine the
ordering of the two.

« |t uses a single number to do so.

 Basic idea
1 2
P1 a b m,
N : Physical
P2 ¢ d time
m;
5
P3

f

* But each process needs g .know a time value

Logical Clocks

* (Lamport algorithm assigns logical timestamps.)

¢ Each process uses a counter with initial value of
zero

* A process increments its counter when a send or an
instruction happens at it. The counter is assigned to
the event as its timestamp.

* Asend (message) event carries its timestamp

* For a receive (message) event the counter is
updated by max(local clock, message timestamp) +
1

CSE 486/586 8

A Catch
 Algorithm

All processes use a counter (clock) with initial value of zero
* Aprocess increments its counter when a send or an instruction happens
at it. The counter is assigned to the event as its timestamp.
* Asend (message) event carries its timestamp
* For areceive (message) event the counter is updated by max(local clock,
message timestamp) + 1

1 2
P1

a

b m,
N Physical
P2 c d time
m
P3
o CSE 486/586 ¢ 5

Happened Before

» Define a logical relation happened-before (—)
among events:
« On the same process: a — b, if time(a) < time(b)
« If p1 sends m to p2: send(m) —» receive(m)
« (Transitivity) Ifa »band b —»cthen a » ¢

« Shows causality of events

CSE 486/586 10

CSE 486/586 Administrivia
* PA2Ais out. Two points:

— Multicast: Need to send each message to every instance
including the one that sends the message. Just create 5
connections (5 sockets) and send a message 5 times
through different connections.

— ContentProvider: Don'’t call it directly. Don’t share anything
with the main activity. Consider it an almost separate app
only accessible via ContentResolver.

CSE 486/586 11

Find the Mistake: Lamport Logical
Time

Physical Time

.
>

p 1
p 2
P3 @
p4d @

@ Clock Value

—fimestamp >, \essage

CSE 486/586 12

Corrected Example: Lamport Logical
Time

Physical Time

Y

p 1
p 2
P3 @
p4 O
@ Clock Value

—fimestamp >, \essage

CSE 486/586 13

One Issue
Physical Time -
p 1
1 7 ‘< / 8
p2 2 q
3 ‘ 6
P3 @
4 7
p4 @ (@)
@ Clock Value l\-SZnE Tare -;
—fimestamp >, 1logically concurrent|
essage |wQUt§. _____ 1
CSE 486/586 14

Vector Timestamps

» With Lamport clock
« e “happened-before” f = timestamp(e) < timestamp (f), but
« timestamp(e) < timestamp (f) % e “happened-before” f

* ldea?
« Each process keeps a separate clock & pass them around.
« Each process learns about what happened in all others.

(10,0 (20,0
Py a b m
\(211-0) (22,0 Physical
[time
c d my
(00,9 222
]
e f
CSE 486/586 15

Vector Logical Clocks

» Vector Logical time addresses the issue:

« All processes use a vector of counters (logical clocks), it"
element is the clock value for process i, initially all zero.

« Each process i increments the it" element of its vector upon an

instruction or send event. Vector value is timestamp of the
event.

* A send(message) event carries its vector timestamp (counter
vector)

* For a receive(message) event, Vreceiver[j] =
* Max(Vreceiver]j] , Vmessage[j]), if j is not self,
* Vreceiver[j] + 1, otherwise
¢ Key point
* You update your own clock. For all other clocks, rely on what
other processes tell you and get the most up-to-date values.

CSE 486/586 16

Find a Mistake: Vector Logical Time

Physical Time

Vector logical clock

(vector timestam& M e

CSE 486/586 17

Comparing Vector Timestamps

s VT, = VT,

o iff VT4fi] = VTo[il, foralli=1, ..., n
s VT, <= VT,

o iff VT4[i] <= VT[i], foralli=1, ..., n
s VT <VTy,

« ff VT <= VT, &3 (1 <=j<=n& VT[] < VT, [[])
* VT, is concurrent with VT,
« iff (not VT, <= VT, AND not VT, <= VT;)

CSE 486/586 18

The Use of Logical Clocks

* |s a design decision
» NTP error bound
— Local: a few ms
— Wide-area: 10’s of ms
« If your system doesn’t care about this inaccuracy,
then NTP should be fine.
« Logical clocks impose an arbitrary order over
concurrent events anyway
— Breaking ties: process IDs, etc.

CSE 486/586 19

Summary

« Relative order of events enough for practical
purposes

— Lamport’s logical clocks
— Vector clocks

» Next: How to take a global snapshot

CSE 486/586

20

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

CSE 486/586 21

