
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Global States

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
• Ordering of events

– Many applications need it, e.g., collaborative editing,

distributed storage, etc.

• Logical time
– Lamport clock: single counter

– Vector clock: one counter per process

– Happens-before relation shows causality of events

• Today: An important algorithm related to the
discussion of time

2

CSE 486/586

Today’s Topic
• Global snapshots
• For distributed programming, it’s important to be able

to reason about your system’s behavior in the
abstract.

• Today’s topic will further increase your
understanding.

3 CSE 486/586

Today’s Question
• Example question: who has the most friends on

Facebook?
• Challenges to answering this question?

– It changes!

• What do we need?
– A snapshot of the social network graph at a particular time

4

CSE 486/586

Today’s Question
• Distributed debugging

• How do you debug this?
– Log in to one machine and see what happens
– Collect logs and see what happens
– Taking a global snapshot!

5

P0 P1 P2

Deadlock!

Both waiting…

CSE 486/586

What is a Snapshot?
• Single process snapshot

• Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

• For the sake of this lecture, let’s say a log of events.

• Multi-process snapshot
• Two things

• Process snapshots: Snapshots of all process states
• Network snapshot: All messages in the network

6

C 2

CSE 486/586

What Do We Want?

• Would you say this is a good snapshot?
– “Good”: we can explain all the causality, including messages

– No because e2
1 might have been caused by e3

1.

• Three things we want.
– Per-process state

– Messages that are causally related to each and every local
snapshot and in flight

– All events that happened before each event in the snapshot
7

P1

P2

P3

e10 e11
e12 e13

e20

e2
1

e2
2

e30 e3
1

e32

A “cut”

CSE 486/586

Obvious First Try
• Synchronize clocks of all processes

– Ask all processes to record their states at known time t

• Problems?
– Time synchronization possible only approximately
– Another issue?

– Does not record the state of messages in the channels

• Again: synchronization not required – causality is
enough!

• What we need: logical global snapshot
– The state of each process
– Messages in transit in all communication channels

8

P0 P1 P2

msg

CSE 486/586

How to Do It? Definitions

• For a process Pi , where events ei
0, ei

1, … occur,
• history(Pi) = hi = <ei0, ei1, … >
• prefix history(Pik) = hik = <ei0, ei1, …,eik >
• Sik : Pi ’s state immediately after kth event

• For a set of processes P1 , …,Pi , …. :
• Global history: H = Èi (hi)
• Global state: S = Èi (Siki)
• A cut C Í H = h1c1 È h2c2 È… È hncn

• The frontier of C = {eici, i = 1,2, … n}
9

P1

P2

P3

e10 e11
e12 e13

e20

e21

e22

e30 e31 e32

CSE 486/586

Consistent States
• A cut C is consistent if and only if

• "e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if
• it corresponds to a consistent cut

10

P1

P2

P3

e10 e11 e12 e13

e20

e21

e22

e30 e31 e32

Inconsistent cut Consistent cut

CSE 486/586

Why Consistent States?
• #1: For each event, you can trace back the causality.
• #2: The state machine view of a distributed system

– The execution of a distributed system as a series of
transitions between global states: S0 à S1 à S2 à …

– …where each transition happens with one single action from
a process (i.e., local process event, send, and receive)

– Each state (S0, S1, S2, …) is a consistent state.

11 CSE 486/586

CSE 486/586 Administrivia
• PA2-A deadline: This Friday
• PA1: Will start grading from today
• Please come and ask questions during office hours.

12

C 3

CSE 486/586

The Snapshot Algorithm: Assumptions
• There is a communication channel between each

pair of processes (@each process: N-1 in and N-1

out)

• Communication channels are unidirectional and

FIFO-ordered (important point)

• No failure, all messages arrive intact, exactly once

• Any process may initiate the snapshot

• Snapshot does not interfere with normal execution

• Each process is able to record its state and the state

of its incoming channels (no central collection)

13 CSE 486/586

Single Process vs. Multiple Processes
• Single process snapshot

• Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

• But for the sake of this lecture, let’s say a log of all events

• Multi-process snapshot
• Snapshots of all process states

• Network snapshot: All messages in the network

• Two questions:
• #1: When to take a local snapshot at each process so that

the collection of them can form a consistent global state?
(Process snapshot)

• #2: How to capture messages in flight? (Network snapshot)

14

CSE 486/586

Reminder: Clock-Sync’d Snapshot
• Instantaneous snapshot

– Process snapshots and network messages at time t
– We can’t quite do it due to (i) imperfect clock sync and (ii) no

help from the network.

15

P1

P2
a b

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea
• Goal: taking a consistent (not instantaneous) global

snapshot
• Any process can initiate a snapshot-taking process

by taking a local snapshot and sending a message
called a marker.

• Upon receiving a marker, a process takes a local
snapshot of its own. (The proc. snapshot part done)

– Still need to take a network snapshot.

• How do we take a network snapshot?
– Insight: messages in flight will eventually arrive.

16

P1

P2
a

b
M

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea
• Each process that has taken a snapshot also starts

recording incoming messages
– Since those messages were in the network when the

snapshot was being taken.
– If every process does this, we will capture all messages in

flight, recording messages destined to each process.

• Tricky part: the algorithm has a mechanism to stop
recording incoming messages at some point.

17

P1

P2
a

b
M

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea
• Reminder: which messages do we want to record?

– Messages that were in the network at the time of taking a
snapshot

• How do we record just those messages?
– Insight: we can mark the end of relevant messages.

• After taking a local snapshot, each process sends a
message saying that it’s done sending all messages
relevant to the snapshot.

– In fact, we don’t need a different message type, we use the
same marker message.

18

P1

P2
a

b
M M

C 4

CSE 486/586

Chandy and Lamport’s Snapshot
• Marker broadcast & recording

– The initiator broadcasts a “marker” message to everyone
else

– If a process receives a marker for the first time, it takes a
local snapshot, starts recording all incoming messages, and
broadcasts a marker again to everyone else.

– A process stops recording for each channel, when it
receives a marker for that channel.

19

P1

P2

P3

a

b

M M
M

M

M

M

CSE 486/586

The Snapshot Algorithm
1. Marker sending rule for initiator process P0

• After P0 has recorded its own state
• for each outgoing channel C, send a marker message

on C
2. Marker receiving rule for a process Pk

on receipt of a marker over channel C
• if Pk has not yet recorded its own state

• record Pk’s own state
• record the state of C as “empty”
• for each outgoing channel C, send a marker on C
• turn on recording of messages over other incoming channels

• else
• record the state of C as all the messages received over C

since Pk saved its own state; stop recording state of C
20

CSE 486/586

Exercise

21

P1

P2

P3

e10

e20

e23

e30

e13

a

b

M

e11,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e21,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e14

3- P1 receives Marker over C21, sets state(C21) = {a}

e32,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e24

5- P2 receives Marker over C32, sets state(C32) = {b}

e31

6- P3 receives Marker over C23, sets state(C23) = {}

e13

7- P1 receives Marker over C31, sets state(C31) = {}

CSE 486/586

One Provable Property
• The snapshot algorithm gives a consistent cut
• Meaning,

– Suppose ei is an event in Pi, and ej is an event in Pj

– If ei à ej, and ej is in the cut, then ei is also in the cut.

• Proof sketch: proof by contradiction
– Suppose ej is in the cut, but ei is not.

– Since ei à ej, there must be a sequence M of messages
that leads to the relation.

– Since ei is not in the cut (our assumption), a marker
should’ve been sent before ei, and also before all of M.

– Then Pj must’ve recorded a state before ej, meaning, ej is
not in the cut. (Contradiction)

22

CSE 486/586

Summary
• Global states

– A union of all process states

– Consistent global state vs. inconsistent global state

• The “snapshot” algorithm
• Take a snapshot of the local state

• Broadcast a “marker” msg to tell other processes to record

• Start recording all msgs coming in for each channel until
receiving a “marker”

• Outcome: a consistent global state

23 CSE 486/586 24

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

