CSE 486/586 Distributed Systems
Reliable Multicast --- 2

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

» How do a group of processes communicate?

* Multicast
— One-to-many: “Local” broadcast within a group g of
processes

» What are the issues?
— Processes crash (we assume crash-stop)
— Messages get delayed

* B-multicast

» R-Multicast
— Properties: integrity, agreement, validity

* Ordering

— Why do we care about ordering?

CSE 486/586

Recap: Ordering

«Totally ordered messages T e
Trand To. (1\ 2"

*FIFO-related messages F1
and Fz.

+Causally related messages F,
Crand Cs

«Total ordering does not
imply causal ordering.

L Time
« Causal ordering implies

FIFO ordering c
« Causal ordering does not c
imply total ordering. ﬁ | G

« Hybrid mode: causal-total
ordering, FIFO-total |
ordering. P, P, Py

CSE 486/586 3

Example: FIFO Multicast

(do NOT be confused with vector timestamps)

“Accept” = Deliver

Physical Time -
> Reject:
1<1+1

Bam Accept: BR

[dd0] g 2=1+1 0] M0
o NS N

Sequence Vector

CSE 486/586 4

Totally Ordered Multicast

» Using a sequencer
— One dedicated “sequencer” that orders all messages
— Everyone else follows.

* ISIS system

— Similar to having a sequencer, but the responsibility is
distributed to each sender.

CSE 486/586 5

Total Ordering Using a Sequencer

Sequencer = Leader process
1. Algorithm for group member p

On initialization: r, = 0;

To TO-multicast message m to group g

B-multicast(g U {sequencer(g)}, <m, i>); i: unique message id
On B-deliver(<m, i>) with g = group(m)

Place <m, i> in hold-back queue;
On B-deliver(m,,g,, = <“order”, i, §>) with g = group(n ;o)

wait until <m, i> in hold-back queue and § = r_;

TO-deliver m; // (after deleting it from the hold-back queue)

r,=8+1;

g

2. Algorithm for sequencer of g
On initialization: sg=0

On B-deliver(<m, i>) with g = group(m)
B-multicasi(g, <“order”, i, 5,>):

s, =8, 1

CSE 486/586 6

ISIS algorithm for total ordering

» No central sequencer

— Achieves decentralization

— Distributed doesn’t mean decentralized.
Every sender acts as a sequencer.
Since there is no single sequencer that determines a
number, it requires agreement on sequence
numbers.

— Agreement is very important for decentralization.
Thus, each sender does not pick a sequence number
alone.

— Otherwise, two different senders can pick the same number.
Each sender receives proposals for a sequence
number every time.

— Among the proposals, the sender picks a number.
CSE 486/586 7

ISIS algorithm for total ordering

3 Agreed Seq

P1

P3

CSE 486/586 8

ISIS algorithm for total ordering

» How to propose a number?

— Need a way to guarantee that a higher number is picked
among all numbers assigned as sequence numbers already
or potentially assigned as sequence numbers

— Each message receiver pick a number that is the highest
among all the numbers that it has ever seen, i.e., all
previous proposals and actual message sequence numbers.

» How to pick a sequence number out of all proposals?
— Among all proposals, pick the highest number

CSE 486/586 9

ISIS algorithm for total ordering

« Sender multicasts message to everyone
Reply with proposed priority (sequence no.)
— Larger than all observed agreed priorities
— Larger than any previously proposed (by self) priority
« Store message in priority queue
— Ordered by priority (proposed or agreed)
— Mark message as undeliverable
« Sender chooses agreed priority, re-multicasts message
with agreed priority
— Maximum of all proposed priorities
« Upon receiving agreed (final) priority
— Mark message as deliverable
— Reorder the delivery queue based on the priorities
— Deliver any deliverable messages at the front of priority queue
Notice any (small) issue?

CSE 486/586 10

CSE 486/586 Administrivia

* PA2-Bis due on 3/15.
— Right before Spring break
» Midterm is on 3/13.
» Come up with a schedule that works.

CSE 486/586 11

Y%,

Problematic Scenario

» Two processes P1 & P2 at their initial state.
P1 sends M1 & P2 sends M2.

» P1 receives M1 (its own) and proposes 1. P2 does
the same for M2.

P2 receives M1 (P1’s message) and proposes 2. P1
does the same for M2.

P1 picks 2 for M1 & P2 also picks 2 for M2.

+ Same sequence number for two different msgs.
* How do you want to solve this?

— Use process numbers as a tie-breaker.

— For a proposal, always use the following format: X.Y
» Xis the proposed number and Y is the process id.

— P1 has proposed 2 for M1 - The proposal for M1 is now
21 CSE 486/586 12

Example: ISIS algorithm

We don't dictate when events are happening

P1

P2

P3

CSE 486/586 13

Example: ISIS algorithm

We don't dictate when events are happening

p1 A A11

P2

P3

CSE 486/586 14

Example: ISIS algorithm

We don't dictate when events are happening

war

P2

P3 -

CSE 486/586 15

Example: ISIS algorithm

We don't dictate when events are happening

war

P2 -

P3 w [Bi1s

CSE 486/586 16

Example: ISIS algorithm

We don't dictate when events are happening

P1 -} P | At
/
2 [er2][222]

P3 w [E75]

CSE 486/586 17

Example: ISIS algorithm

We don't dictate when events are happening

P1 -} A 7‘ At

P2 / EDE3A

nd Y e

CSE 486/586 18

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 19

Example: ISIS algorithm

We don't dictate when events are happening

P14 4 71 --
/)
P2 N 2wz oz |
\ Ve

a

¥ / /
P3 ESESES

B

CSE 486/586 21

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 23

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 20

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 22

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 24

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 25

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 27

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 29

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 26

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 28

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 30

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 31

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 33

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 35

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 32

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 34

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 36

Example: ISIS algorithm

We don't dictate when events are happening

CSE 486/586 37

Example: ISIS algorithm

We don't dictate when events are happening

(s g 51

CSE 486/586 38

Example: ISIS algorithm

We don't dictate when events are happening

(oo g1)

CSE 486/586 39

Example: ISIS algorithm

We don't dictate when events are happening

s [)

P2 ,’q)7

P3

CSE 486/586 40

Example: ISIS algorithm

We don't dictate when events are happening

s] 3]

CSE 486/586 41

Example: ISIS algorithm

We don't dictate when events are happening

s [)

P2 ,’q)7

P3

o s s

s [eaa)

CSE 486/586 42

Example: ISIS algorithm

We don't dictate when events are happening

s])

CSE 486/586 43

Example: ISIS algorithm

We don't dictate when events are happening

s i)

CSE 486/586 45

Example: ISIS algorithm

We don't dictate when events are happening

s i)

Example: ISIS algorithm

We don't dictate when events are happening

s [)

CSE 486/586 44

Example: ISIS algorithm

We don't dictate when events are happening

s [)

s A . EEn

P3

CSE 486/586 46

CSE 486/586 47

Example: ISIS algorithm

We don't dictate when events are happening

s [)

s A . EEn

P3

CSE 486/586 48

Example: ISIS algorithm

We don't dictate when events are happening

4 y a1 1 3]

Yy N

P2

e
\ |

P3

CSE 486/586 49

Vo

Example: ISIS algorithm

We don't dictate when events are happening

4 y s 1 [

- T e CiEs

s\
\ 4
- A28

P3

CSE 486/586 50

Example: ISIS algorithm

We don't dictate when events are happening

P2

P3

CSE 486/586

Proof of Total Order

» For a message my, consider the first process p that
delivers my

* Atp, when messa%e m; is at head of priority queue and
has been marked deliverable, let m> be another message

thaﬁ has nat yet been delivered (i.e., is on the same queue
or has not béen seen yet by p

finalpriority(my) >= Due to “max” operation at sender
proposedpriority(my) >
finalpriority(m+)

. SuPpose there is some other process p’ that delivers m;
betore it delivers m4. Then at p’,

finalpriority(m1) >= Due to “max” operation at sender
proposedpriority(mq) >
finalpriority(my)

Since queue ordered by increasing priority

Since queue ordered by increasing priority

« a contradiction!

CSE 486/586 52

Causally Ordered Multicast

» Each process keeps a vector clock.

— Each counter represents the number of messages received
from each of the other processes.

* When multicasting a message, the sender process
increments its own counter and attaches its vector
clock.

+ Upon receiving a multicast message, the receiver
process waits until it can preserve causal ordering:

— It has delivered all the messages from the sender.

— It has delivered all the messages that have happened
before, i.e., messages that the sender had delivered before
the multicast message.

CSE 486/586 53

Causal Ordering

Algorithm for group member p; (i = 1,2...,N)

On initialization The number of group-g messages

V?[J] =0 = L2..,N); from process j that have been seen at
To CO-multicast message m to group g~ Processisofar

Ve = VST + 1

B-multicasi(g, <V, m>);
On B-deliver(< Vf, m>) from p jr with g = group(m)

place <V, m> in hold-back queue;

wait unti V’j[j] = V¥[j]1+ 1and Vf[k] < VALK (k# j);

CO-deliver m; // after removing it from the hold-back queue

VEL = VL 1

CSE 486/586 54

Example: Causal Ordering Multicast

Accept
Buffered

Buffer,
missing
P1

.

>
Physical Time

CSE 486/586 55

Summary

» Two multicast algorithms for total ordering
— Sequencer
- Isis

* Multicast for causal ordering
— Uses vector timestamps

CSE 486/586

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586

10

