
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Reliable Multicast --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
• How do a group of processes communicate?

• Multicast

– One-to-many: “Local” broadcast within a group g of 

processes

• What are the issues?

– Processes crash (we assume crash-stop)

– Messages get delayed

• B-multicast

• R-Multicast

– Properties: integrity, agreement, validity

• Ordering

– Why do we care about ordering?

2

CSE 486/586

Recap: Ordering

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

•Totally ordered messages 
T1 and T2.

•FIFO-related messages F1
and F2.

•Causally related messages 
C1 and C3

•Total ordering does not 
imply causal ordering.

• Causal ordering implies 
FIFO ordering

• Causal ordering does not 
imply total ordering.

• Hybrid mode: causal-total 
ordering, FIFO-total 
ordering.

3 CSE 486/586

Example: FIFO Multicast 

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

1 1 2 2 1

1

Reject:
1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer 
2>0 +1

Accept:
1 = 0 + 1

2 0 0

Accept 
Buffer

2 =1 + 1

Accept
1 = 0 + 1

Sequence Vector0 0 0

(do NOT be confused with vector timestamps)

�Accept� = Deliver

4

1

CSE 486/586

Totally Ordered Multicast
• Using a sequencer

– One dedicated “sequencer” that orders all messages

– Everyone else follows.

• ISIS system
– Similar to having a sequencer, but the responsibility is 

distributed to each sender.

5 CSE 486/586

Total Ordering Using a Sequencer
Sequencer = Leader process

6

i: unique message id



C 2

CSE 486/586

ISIS algorithm for total ordering
• No central sequencer

– Achieves decentralization
– Distributed doesn’t mean decentralized.

• Every sender acts as a sequencer.
• Since there is no single sequencer that determines a 

number, it requires agreement on sequence 
numbers.

– Agreement is very important for decentralization.

• Thus, each sender does not pick a sequence number 
alone.

– Otherwise, two different senders can pick the same number.
• Each sender receives proposals for a sequence 

number every time.
– Among the proposals, the sender picks a number.

7 CSE 486/586

ISIS algorithm for total ordering

2
1

1

2

2

1 Message

2 Proposed Seq

P2

P3

P1

P4

3 Agreed Seq

3

3

8

CSE 486/586

ISIS algorithm for total ordering
• How to propose a number?

– Need a way to guarantee that a higher number is picked
among all numbers assigned as sequence numbers already 
or potentially assigned as sequence numbers

– Each message receiver pick a number that is the highest 
among all the numbers that it has ever seen, i.e., all 
previous proposals and actual message sequence numbers.

• How to pick a sequence number out of all proposals?
– Among all proposals, pick the highest number

9 CSE 486/586

ISIS algorithm for total ordering
• Sender multicasts message to everyone
• Reply with proposed priority (sequence no.)

– Larger than all observed agreed priorities
– Larger than any previously proposed (by self) priority

• Store message in priority queue
– Ordered by priority (proposed or agreed)
– Mark message as undeliverable

• Sender chooses agreed priority, re-multicasts message 
with agreed priority

– Maximum of all proposed priorities
• Upon receiving agreed (final) priority

– Mark message as deliverable
– Reorder the delivery queue based on the priorities
– Deliver any deliverable messages at the front of priority queue

• Notice any (small) issue?

10

CSE 486/586

CSE 486/586 Administrivia
• PA2-B is due on 3/15.

– Right before Spring break

• Midterm is on 3/13.
• Come up with a schedule that works.

11 CSE 486/586

Problematic Scenario
• Two processes P1 & P2 at their initial state.
• P1 sends M1 & P2 sends M2.
• P1 receives M1 (its own) and proposes 1. P2 does 

the same for M2.
• P2 receives M1 (P1’s message) and proposes 2. P1 

does the same for M2.
• P1 picks 2 for M1 & P2 also picks 2 for M2.
• Same sequence number for two different msgs.
• How do you want to solve this?

– Use process numbers as a tie-breaker.
– For a proposal, always use the following format: X.Y

» X is the proposed number and Y is the process id.

– P1 has proposed 2 for M1 à The proposal for M1 is now 
2.1.

12



C 3

CSE 486/586

Example: ISIS algorithm

13

P1

P2

P3

We don’t dictate when events are happening

CSE 486/586

Example: ISIS algorithm

14

AP1

P2

P3

We don’t dictate when events are happening

A:1.1

CSE 486/586

Example: ISIS algorithm

15

AP1

P2

P3

We don’t dictate when events are happening

B

A:1.1

B:1.3

CSE 486/586

Example: ISIS algorithm

16

AP1

P2

P3

We don’t dictate when events are happening

B

B:1.2

A:1.1

B:1.3

CSE 486/586

Example: ISIS algorithm

17

AP1

P2

P3

We don’t dictate when events are happening

B

B:1.2 A:2.2

A:1.1

B:1.3

CSE 486/586

Example: ISIS algorithm

18

AP1

P2

P3

We don’t dictate when events are happening

B

B:1.2 A:2.2

A:1.1

A:2.3B:1.3



C 4

CSE 486/586

Example: ISIS algorithm

19

AP1

P2

P3

We don’t dictate when events are happening

B

C C:3.2B:1.2 A:2.2

A:1.1

A:2.3B:1.3

CSE 486/586

Example: ISIS algorithm

20

AP1

P2

P3

We don’t dictate when events are happening

B

C

C:2.1

A:2.3B:1.3

B:1.2 A:2.2

A:1.1

C:3.2

CSE 486/586

Example: ISIS algorithm

21

AP1

P2

P3

We don’t dictate when events are happening

B

C

C:3.3

C:2.1

A:2.3B:1.3

B:1.2 A:2.2

A:1.1

C:3.2

CSE 486/586

Example: ISIS algorithm

22

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

C:2.1

A:2.3B:1.3

B:1.2 A:2.2

A:1.1

C:3.2

CSE 486/586

Example: ISIS algorithm

23

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3A:2.3B:1.3

B:1.2 A:2.2 C:3.2

C:2.1A:1.1

CSE 486/586

Example: ISIS algorithm

24

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3A:2.3B:1.3

B:1.2 A:2.2 C:3.2

A:2.3 C:2.1



C 5

CSE 486/586

Example: ISIS algorithm

25

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3A:2.3B:1.3

B:1.2 A:2.2 C:3.2

A:2.3 C:2.1

CSE 486/586

Example: ISIS algorithm

26

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3B:1.3

B:1.2 A:2.2 C:3.2

A:2.3C:2.1

A:2.3

CSE 486/586

Example: ISIS algorithm

27

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3B:1.3

B:1.2 A:2.2 C:3.2

A:2.3C:2.1

A:2.3

CSE 486/586

Example: ISIS algorithm

28

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3B:1.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

CSE 486/586

Example: ISIS algorithm

29

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

B:1.3

CSE 486/586

Example: ISIS algorithm

30

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1



C 6

CSE 486/586

Example: ISIS algorithm

31

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

CSE 486/586

Example: ISIS algorithm

32

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

CSE 486/586

Example: ISIS algorithm

33

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

CSE 486/586

Example: ISIS algorithm

34

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2 C:3.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

CSE 486/586

Example: ISIS algorithm

35

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

C:3.2

CSE 486/586

Example: ISIS algorithm

36

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

C:3.3



C 7

CSE 486/586

Example: ISIS algorithm

37

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2

A:2.3C:2.1

A:2.3

A:2.3

B:3.1

C:3.3

CSE 486/586

Example: ISIS algorithm

38

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

CSE 486/586

Example: ISIS algorithm

39

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

CSE 486/586

Example: ISIS algorithm

40

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

C:3.3

B:1.2

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

CSE 486/586

Example: ISIS algorithm

41

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

B:1.2

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

C:3.3

CSE 486/586

Example: ISIS algorithm

42

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

B:1.2

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

C:3.3



C 8

CSE 486/586

Example: ISIS algorithm

43

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1

B:1.2

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

C:3.3

CSE 486/586

Example: ISIS algorithm

44

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

CSE 486/586

Example: ISIS algorithm

45

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

CSE 486/586

Example: ISIS algorithm

46

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

CSE 486/586

Example: ISIS algorithm

47

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

CSE 486/586

Example: ISIS algorithm

48

AP1

P2

P3

We don’t dictate when events are happening

B

C

B:3.1A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3



C 9

CSE 486/586

Example: ISIS algorithm

49

AP1

P2

P3

We don’t dictate when events are happening

B

C

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

B:3.1

CSE 486/586

Example: ISIS algorithm

50

AP1

P2

P3

We don’t dictate when events are happening

B

C

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

B:3.1

CSE 486/586

Example: ISIS algorithm

51

AP1

P2

P3

We don’t dictate when events are happening

B

C

A:2.3

A:2.3

A:2.3

B:3.1

C:3.3

C:3.3

B:3.1

C:3.3

B:3.1

CSE 486/586

Proof of Total Order 
• For a message m1, consider the first process p that 

delivers m1

• At p, when message m1 is at head of priority queue and 
has been marked deliverable, let m2 be another message 
that has not yet been delivered (i.e., is on the same queue 
or has not been seen yet by p)

finalpriority(m2) >=

proposedpriority(m2) >

finalpriority(m1)

• Suppose there is some other process p’ that delivers m2

before it delivers m1. Then at p’,
finalpriority(m1) >= 

proposedpriority(m1) >

finalpriority(m2)

• a contradiction!

Due to �max� operation at sender

Since queue ordered by increasing priority

Due to �max� operation at sender

Since queue ordered by increasing priority

52

CSE 486/586

Causally Ordered Multicast
• Each process keeps a vector clock.

– Each counter represents the number of messages received
from each of the other processes.

• When multicasting a message, the sender process 
increments its own counter and attaches its vector 
clock.

• Upon receiving a multicast message, the receiver 
process waits until it can preserve causal ordering:

– It has delivered all the messages from the sender.
– It has delivered all the messages that have happened 

before, i.e., messages that the sender had delivered before 
the multicast message.

53 CSE 486/586

Causal Ordering

The number of group-g messages
from process j that have been seen at

process i so far

54



C 10

CSE 486/586

Example: Causal Ordering Multicast 

P1

P2

P3

Physical Time

(1,1,0)

Reject:

Accept

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer,
missing 

P1(1) 

1,1,0

1,1,0

1,1,0

Accept:

1,0,0

Accept 
Buffered 
message

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept

55 CSE 486/586

Summary
• Two multicast algorithms for total ordering

– Sequencer
– ISIS

• Multicast for causal ordering
– Uses vector timestamps

56

CSE 486/586 57

Acknowledgements
• These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC).


