
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Gossiping

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Revisiting Multicast

2

Distributed
Group of
“Nodes”=
Processes
at Internet-
based hosts

Node with a piece of information

to be communicated to everyone

CSE 486/586

Fault-Tolerance and Scalability

3

Multicast sender

Multicast Protocol

n Nodes may crash
n Packets may

be dropped
n Possibly
1000�s of nodes

X
X

CSE 486/586

B-Multicast

4

UDP/TCP packets

n Simplest
implementation

n Problems?

CSE 486/586

R-Multicast

5

UDP/TCP packets

n Stronger
guarantees

n Overhead is
quadratic in N

CSE 486/586

Any Other?
• E.g., tree-based multicast

6

UDP/TCP packets

n e.g., IPmulticast, SRM
RMTP, TRAM,TMTP

n Tree setup
and maintenance

n Problems?

C 2

CSE 486/586

Another Approach

7

Multicast sender

CSE 486/586

Another Approach

8

Gossip messages (UDP)
Periodically, transmit to
b random targets

CSE 486/586

Another Approach

9

Other nodes do same
after receiving multicast Gossip messages (UDP)

CSE 486/586

Another Approach

10

CSE 486/586

Uninfected

“Gossip” (or “Epidemic”) Multicast

11

Protocol rounds (local clock)
b random targets per round

Infected

Gossip Message (UDP)

CSE 486/586

CSE 486/586 Administrivia
• PA2-B is due in ~2 weeks.

– Please start now!
– This is when some people seriously consider code-copying.

• PA1 grades are posted.
• PA2-A grading is in progress.
• Undergrads: we will have recitations this week.

12

C 3

CSE 486/586

Properties
• Lightweight

• Quick spread

• Highly fault-tolerant

• Analysis from old mathematical branch of

Epidemiology [Bailey 75]

• Parameters c,b:

– c for determining rounds: (c*log(n)), b: # of nodes to contact

– Can be small numbers independent of n, e.g., c=2; b=2;

• Within c*log(n) rounds, [low latency]

– all but of nodes receive the multicast

[reliability]

– each node has transmitted no more than c*b*log(n) gossip
messages [lightweight]

13

2

1
-cbn

CSE 486/586

Fault-Tolerance
• Packet loss

– 50% packet loss: analyze with b replaced with b/2
– To achieve same reliability as 0% packet loss, takes twice

as many rounds

• Node failure
– 50% of nodes fail: analyze with n replaced with n/2 and b

replaced with b/2
– Same as above

14

CSE 486/586

Fault-Tolerance
• With failures, is it possible that the epidemic might

die out quickly?
• Possible, but improbable:

– Once a few nodes are infected, with high probability, the
epidemic will not die out

– So the analysis we saw in the previous slides is actually
behavior with high probability

[Galey and Dani 98]

• The same applicable to:
– Rumors
– Infectious diseases
– An Internet worm

• Some implementations
– Amazon Web Services EC2/S3 (rumored)

– Usenet NNTP (Network News Transport Protocol)
15 CSE 486/586

Using Gossip for Failure Detection:
Gossip-style Heartbeating

16

All-to-all heartbeating

• Each process sends out
heartbeats to every other
process

• Con: Slow process/link causes
false positives

J Using gossip to
spread heartbeats
gives better accuracy

pi

CSE 486/586

Gossip-Style Failure Detection

17

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

•Processes periodically
gossip their membership list

•On receipt, the local
membership list is updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at process
2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

CSE 486/586

Gossip-Style Failure Detection
• If the heartbeat has not increased for more than Tfail

seconds (according to local time),
the member is considered failed

• But don’t delete it right away
• Wait another Tcleanup seconds, then delete the

member from the list

18

C 4

CSE 486/586

Summary
• Gossiping

– One strategy for lazy replication
– High-level of fault-tolerance & quick spread

• Another use case for gossiping
– Failure detection

19 CSE 486/586 20

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

