
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Concurrency Control --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
• Question: How to support transactions?

– Multiple transactions share data.

• Complete serialization is correct
– Use locks to serialize transactions.

• But performance and abort are two issues.
– For performance: Interleaving transactions

2

CSE 486/586

Handling Abort()
• For serialized transactions, abort() can be done if we

only store temporary results in memory.
• When commit() is invoked at the end of each

transaction, we write it to permanent storage, making
the final outcomes visible to other transactions.

• But for interleaving, intermediate results are used

Transaction T1 Transaction T2
begin() begin()

balance = b.getBalance() bal = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(bal*1.1)
a.withdraw(balance* 0.1) c.withdraw(bal*0.1)
commit() commit()

3

100 200 300a: b: c:

CSE 486/586

Handling Abort() with Interleaving
• What can go wrong?

4

Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400
total = total+c.getBalance()
...

CSE 486/586

Strict Executions of Transactions
• Problem of interleaving for abort()

– Intermediate state visible to other transactions, i.e., other
transactions could have used some results already.

• For abort(), transactions should delay both their read
and write operations on an object (until commit time)

– Until all transactions that previously wrote that object have
either committed or aborted

– This way, we avoid making intermediate states visible
before commit, just in case we need to abort.

– This is called strict executions.

• This further restricts which interleavings of
transactions are allowed.

• Thus, correctness criteria for transactions:
– Serial equivalence

– Strict execution
5 CSE 486/586

Story Thus Far
• Question: How to support transactions?

– With multiple transactions sharing data

• First strategy: Complete serialization

– One transaction at a time with one big lock

– Correct, but at the cost of performance

• How to improve performance?

– Let’s see if we can interleave different transactions.

• Problem: Not all interleavings produce a correct

outcome

– Serial equivalence & strict execution must be met.

• Now, how do we meet the requirements?

– Overall strategy: using more and more fine-grained locking

– No silver bullet. Fine-grained locks have their own

implications.
6

C 2

CSE 486/586

Using Exclusive Locks
• Exclusive Locks (Avoiding One Big Lock)

Transaction T1 Transaction T2
begin()

balance = b.getBalance() begin()

balance = b.getBalance()

b.setBalance = (balance*1.1)

a.withdraw(balance* 0.1)

commit()

b.setBalance = (balance*1.1)

c.withdraw(balance*0.1)

commit()

7

Lock
B

Lock
A

UnLock
B

UnLock
A Lock

C
UnLock

B
UnLock

C

…

WAIT
on B

Lock
B

…

CSE 486/586

How to Acquire/Release Locks
• Can’t do it naively

• Serially equivalent?
• Strict execution?

8

Transaction T1 Transaction T2
x= a.read()
a.write(20)

y = b.read()

b.write(30)

b.write(x)

z = a.read()

Lock
A

UnLock
A

Lock
B

UnLock
BLock

B

UnLock
B

Lock
A

UnLock
A

CSE 486/586

Using Exclusive Locks
• Two phase locking

– To satisfy serial equivalence

– First phase (growing phase): new locks are acquired

– Second phase (shrinking phase): locks are only released

– A transaction is not allowed to acquire any new lock, once it
has released any one lock

• Strict two phase locking
– To further satisfy strict execution, i.e., to handle abort() &

failures

– Locks are only released at the end of the transaction, either
at commit() or abort(), i.e., the second phase is only
executed at commit() or abort().

• The first example shown before does both. But the
second example does neither.

9 CSE 486/586

CSE 486/586 Administrivia
• Midterm re-grading: This Friday 4 pm – 6 pm during

my office hours

10

CSE 486/586

Can We Do Better?
• What we saw was “exclusive” locks.
• Non-exclusive locks: break a lock into a read lock

and a write lock
• Allows more concurrency

– Read locks can be shared (no harm to share)

– Write locks should be exclusive

11 CSE 486/586

Non-Exclusive Locks
non-exclusive lock compatibility

Lock already Lock requested
set read write

none OK OK
read OK WAIT
write WAIT WAIT

• A read lock is promoted to a write lock when the
transaction needs write access to the same object.

• A read lock shared with other transactions’ read
lock(s) cannot be promoted. Transaction waits for
other read locks to be released.

• Cannot demote a write lock to read lock during
transaction – violates the strict 2P principle

12

C 3

CSE 486/586

Example: Non-Exclusive Locks

Transaction T1 Transaction T2

begin()
balance = b.getBalance() begin()

… balance = b.getBalance()
… b.setBalance =balance*1.1

Commit

13

R-Lock
B

…

R-
Lock

B

Cannot Promote lock on B, Wait

Promote lock on B

CSE 486/586

2PL: a Problem

• What happens in the example below?
Transaction T1 Transaction T2

begin()
balance = b.getBalance() begin()

balance = b.getBalance()
b.setBalance =balance*1.1

b.setBalance=balance*1.1

14

R-Lock
B

…

R-Lock
B

Cannot Promote lock on B, Wait

Cannot Promote lock on B, Wait

…

CSE 486/586

Deadlock Conditions
• Necessary conditions

– Non-sharable resources (locked objects)
– No lock preemption
– Hold & wait or circular wait

15

T U

Wait
for

Held by

Held byWait
for

A
B T

U

Wait
for

Held by

Held byWait
for

A
B

V
W

...

...

Wait
for

Wait
for

Held by

Held by

Hold & Wait Circular Wait

CSE 486/586

Preventing Deadlocks
• Acquiring all locks at once

• Acquiring locks in a predefined order

• Not always practical:

– Transactions might not know which locks they will need in

the future

• One strategy: timeout

– If we design each transaction to be short and fast, then we

can abort() after some period of time.

16

CSE 486/586

• Three types of locks: read lock, write lock, commit
lock

– Acquiring a commit lock only happens at commit().
– Transaction cannot get a read or write lock if there is a

commit lock
– Read and write (from different transactions) can go

concurrently.

• What can go wrong with this?
– Read-write conflicts (but no write-write conflict)

Even More: Two-Version Locking

lock compatibility
Lock already Lock requested

set read write commit
none OK OK OK
read OK OK WAIT
write OK WAIT WAIT
commit WAIT WAIT WAIT

17 CSE 486/586

Two-Version Locking
• Allow writing tentative versions of objects

– Letting other transactions read from the previously

committed version

– Optimistic writes: this works well if there’s little chance of

read-write conflicts.

• At commit(),
– Promote all the write locks of the transaction into commit

locks

– If any objects have outstanding read locks, transaction must

wait until the transactions that set these locks have

completed and locks are released

18

C 4

CSE 486/586

Two-Version Locking
• This allows for more concurrency than read-write

locks.
• Writing transactions risk waiting when commit
• Read operations wait only if another transaction is

committing the same object
• Read operations of one transaction can cause a

delay in the committing of other transactions

19 CSE 486/586

Summary
• Strict Execution

– Delaying both their read and write operations on an object
until all transactions that previously wrote that object have
either committed or aborted

• Strict execution with exclusive locks
– Strict 2PL

• Increasing concurrency
– Non-exclusive locks

– Two-version locks
– Etc.

20

CSE 486/586 21

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

