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Recap
• Question: How to support transactions?

– Multiple transactions share data.

• Complete serialization is correct
– Use locks to serialize transactions.

• But performance and abort are two issues.
– For performance: Interleaving transactions
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Handling Abort()
• For serialized transactions, abort() can be done if we 

only store temporary results in memory.
• When commit() is invoked at the end of each 

transaction, we write it to permanent storage, making 
the final outcomes visible to other transactions.

• But for interleaving, intermediate results are used

Transaction T1  Transaction T2 
begin() begin()

balance = b.getBalance() bal = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(bal*1.1)
a.withdraw(balance* 0.1) c.withdraw(bal*0.1)
commit() commit()
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Handling Abort() with Interleaving
• What can go wrong?
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Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400
total = total+c.getBalance()
...
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Strict Executions of Transactions
• Problem of interleaving for abort()

– Intermediate state visible to other transactions, i.e., other 
transactions could have used some results already.

• For abort(), transactions should delay both their read 
and write operations on an object (until commit time)

– Until all transactions that previously wrote that object have 
either committed or aborted

– This way, we avoid making intermediate states visible 
before commit, just in case we need to abort.

– This is called strict executions.

• This further restricts which interleavings of 
transactions are allowed.

• Thus, correctness criteria for transactions:
– Serial equivalence

– Strict execution
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Story Thus Far
• Question: How to support transactions?

– With multiple transactions sharing data

• First strategy: Complete serialization

– One transaction at a time with one big lock

– Correct, but at the cost of performance

• How to improve performance?

– Let’s see if we can interleave different transactions.

• Problem: Not all interleavings produce a correct 

outcome

– Serial equivalence & strict execution must be met.

• Now, how do we meet the requirements?

– Overall strategy: using more and more fine-grained locking

– No silver bullet. Fine-grained locks have their own 

implications.
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Using Exclusive Locks
• Exclusive Locks (Avoiding One Big Lock)

Transaction T1     Transaction T2
begin()

balance = b.getBalance() begin()

balance = b.getBalance()

b.setBalance = (balance*1.1) 

a.withdraw(balance* 0.1) 

commit()

b.setBalance = (balance*1.1) 

c.withdraw(balance*0.1)

commit()
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How to Acquire/Release Locks
• Can’t do it naively

• Serially equivalent?
• Strict execution?
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Transaction T1    Transaction T2 
x= a.read()
a.write(20)

y = b.read()

b.write(30)

b.write(x)

z = a.read()
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UnLock 
A

Lock 
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UnLock 
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UnLock 
A
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Using Exclusive Locks
• Two phase locking

– To satisfy serial equivalence

– First phase (growing phase): new locks are acquired

– Second phase (shrinking phase): locks are only released

– A transaction is not allowed to acquire any new lock, once it 
has released any one lock

• Strict two phase locking
– To further satisfy strict execution, i.e., to handle abort() & 

failures

– Locks are only released at the end of the transaction, either 
at commit() or abort(), i.e., the second phase is only 
executed at commit() or abort().

• The first example shown before does both. But the 
second example does neither.
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CSE 486/586 Administrivia
• Midterm re-grading: This Friday 4 pm – 6 pm during 

my office hours
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Can We Do Better?
• What we saw was “exclusive” locks.
• Non-exclusive locks: break a lock into a read lock 

and a write lock
• Allows more concurrency

– Read locks can be shared (no harm to share)

– Write locks should be exclusive
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Non-Exclusive Locks
non-exclusive lock compatibility

Lock already Lock requested
set read write

none OK OK
read OK WAIT
write WAIT WAIT

• A read lock is promoted to a write lock when the 
transaction needs write access to the same object.

• A read lock shared with other transactions’ read 
lock(s) cannot be promoted.  Transaction waits for 
other read locks to be released.

• Cannot demote a write lock to read lock during 
transaction – violates the strict 2P principle
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Example: Non-Exclusive Locks

Transaction T1     Transaction T2 

begin()
balance = b.getBalance() begin()

… balance = b.getBalance()
… b.setBalance =balance*1.1 

Commit
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2PL: a Problem

• What happens in the example below?
Transaction T1     Transaction T2 

begin()
balance = b.getBalance() begin()

balance = b.getBalance()
b.setBalance =balance*1.1 

b.setBalance=balance*1.1
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Deadlock Conditions
• Necessary conditions

– Non-sharable resources (locked objects)
– No lock preemption
– Hold & wait or circular wait
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Preventing Deadlocks
• Acquiring all locks at once

• Acquiring locks in a predefined order

• Not always practical:

– Transactions might not know which locks they will need in 

the future

• One strategy: timeout

– If we design each transaction to be short and fast, then we 

can abort() after some period of time.
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• Three types of locks: read lock, write lock, commit 
lock

– Acquiring a commit lock only happens at commit().
– Transaction cannot get a read or write lock if there is a 

commit lock
– Read and write (from different transactions) can go 

concurrently.

• What can go wrong with this?
– Read-write conflicts (but no write-write conflict)

Even More: Two-Version Locking

lock compatibility
Lock already Lock requested

set read write commit
none OK OK OK
read OK OK WAIT
write OK WAIT WAIT
commit WAIT WAIT WAIT
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Two-Version Locking
• Allow writing tentative versions of objects

– Letting other transactions read from the previously 

committed version

– Optimistic writes: this works well if there’s little chance of 

read-write conflicts.

• At commit(),
– Promote all the write locks of the transaction into commit 

locks

– If any objects have outstanding read locks, transaction must 

wait until the transactions that set these locks have 

completed and locks are released
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Two-Version Locking
• This allows for more concurrency than read-write 

locks.
• Writing transactions risk waiting when commit
• Read operations wait only if another transaction is 

committing the same object
• Read operations of one transaction can cause a 

delay in the committing of other transactions
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Summary
• Strict Execution

– Delaying both their read and write operations on an object 
until all transactions that previously wrote that object have 
either committed or aborted

• Strict execution with exclusive locks
– Strict 2PL

• Increasing concurrency
– Non-exclusive locks

– Two-version locks
– Etc.
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