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Local File Systems
• File systems provides file management.

– Name space
– API for file operations (create, delete, open, close, read, 

write, append, truncate, etc.)
– Physical storage management & allocation (e.g., block 

storage)
– Security and protection (access control)

• Name space is usually hierarchical.
– Files and directories

• File systems are mounted.
– Different file systems can be in the same name space.
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Traditional Distributed File Systems
• Goal: emulate local file system behaviors

– Files not replicated
– No hard performance guarantee

• But,
– Files located remotely on servers
– Multiple clients access the servers

• Why?
– Users with multiple machines
– Data sharing for multiple users
– Consolidated data management (e.g., in an enterprise)
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Requirements
• Transparency: a distributed file system should 

appear as if it were a local file system
– Access transparency: it should support the same set of 

operations, i.e., a program that works for a local file system 
should work for a DFS.

– (File) Location transparency: all clients should see the same 
name space.

– Migration transparency: if files move to another server, it 
shouldn’t be visible to users.

– Performance transparency: it should provide reasonably 
consistent performance.

– Scaling transparency: it should be able to scale 
incrementally by adding more servers.
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Requirements
• Concurrent updates should be supported.
• Fault tolerance: servers may crash, msgs can be 

lost, etc.
• Consistency needs to be maintained.
• Security: access-control for files & authentication of 

users
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File Server Architecture
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Components
• Directory service

– Meta data management
– Creates and updates directories (hierarchical file structures)
– Provides mappings between user names of files and the 

unique file ids in the flat file structure.

• Flat file service
– Actual data management
– File operations (create, delete, read, write, access control, 

etc.)

• These can be independently distributed.
– E.g., centralized directory service & distributed flat file 

service
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Sun NFS
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VFS
• A translation layer that makes file systems pluggable 

& co-exist
– E.g., NFS, EXT2, EXT3, ZFS, etc.

• Keeps track of file systems that are available locally 
and remotely.

• Passes requests to appropriate local or remote file 
systems

• Distinguishes between local and remote files.
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NFS Mount Service
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NFS Basic Operations
• Client

– Transfers blocks of files to and from server via RPC

• Server
– Provides a conventional RPC interface at a well-known port 

on each host
– Stores files and directories

• Problems?
– Performance
– Failures
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Improving Performance
• Let’s cache!
• Server-side

– Typically done by OS & disks anyway
– A disk usually has a cache built-in.
– OS caches file pages, directories, and file attributes that 

have been read from the disk in a main memory buffer 
cache.

• Client-side
– On accessing data, cache it locally.

• What’s a typical problem with caching?
– Consistency: cached data can become stale.
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(General) Caching Strategies
• Read-ahead (prefetch)

– Read strategy
– Anticipates read accesses and fetches the pages following 

those that have most recently been read.

• Delayed-write
– Write strategy
– New writes stored locally.
– Periodically or when another client accesses, send back the 

updates to the server

• Write-through
– Write strategy
– Writes go all the way to the server’s disk

• This is not an exhaustive list!
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NFS V3 Client-Side Caching
• We’ll mainly look at NFS V3.
• Write-through, but only at close()

– Not every single write
– Helps performance (reduces network activities & traffic)

• Multiple writers
– No guarantee
– Could be any combination of (over-)writes

• Leads to inconsistency
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Validation
• A client periodically checks with the server about 

cached blocks.
• Each block has a timestamp.

– If the remote block is new, then the client invalidates the 
local cached block.

• Always invalidate after some period of time
– 3 seconds for files
– 30 seconds for directories

• Written blocks are marked as “dirty.”
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Failures
• Two design choices: stateful & stateless

• Stateful
– The server maintains all client information (which file, which 

block of the file, the offset within the block, file lock, etc.)

– Good for the client-side process (just send requests!)

– Becomes almost like a local file system (e.g., locking is easy 
to implement)

• Problem?
– Server crash à lose the client state

– Becomes complicated to deal with failures
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Failures
• Stateless

– Clients maintain their own information (which file, which 
block of the file, the offset within the block, etc.)

– The server does not know anything about what a client 
does.

– Each request contains complete information (file name, 
offset, etc.)

– Easier to deal with server crashes (nothing to lose!)

• NFS V3’s choice
• Problem?

– Locking becomes difficult.
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NFS V3
• Client-side caching for improved performance

• Write-through at close()

– Consistency issue

• Stateless server

– Easier to deal with failures

– Locking is not supported (later versions of NFS support 

locking though)

• Simple design

– Led to simple implementation, acceptable performance, 

easier maintenance, etc.

– Ultimately led to its popularity
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NFS V4
• Stateful system

- New APIs: open() and close()

- Locking is supported through lock(), lockt(), 

locku(), renew()

- Supports read/write locks, call backs etc.

• Effective use of client side caching

• Version 4.1 (pNFS)

- Parallel NFS supports parallel file I/O

- File is striped and stored across multiple servers

- Metadata and data are separated
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CSE 486/586 Administrivia
• Mid-semester grades will be posted by Friday.
• PA3 is due on Friday.
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Brief Intro to Data Centers
• The rest of the semester deals with data centers a 

lot.
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Data Centers
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• Buildings full of machines
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Data Centers
• Hundreds of Locations in the US
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Inside
• Servers in racks

– Usually ~40 blades per rack
– ToR (Top-of-Rack) switch

• Incredible amounts of engineering efforts
– Power, cooling, etc.
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Inside
• Network
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Inside
• 3-tier for Web services
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Web Services
• Amazon, Facebook, Google, Twitter, etc.
• World-wide distribution of data centers

– Load balance, fault tolerance, performance, etc.

• Replicated service & data
– Each data center might be a complete stand-alone web 

service. (It depends though.)

• At the bare minimum, you’re doing read/write.
• What needs to be done when you issue a read req?

– Server selection

• What needs to be done when you issue a write req?
– Server selection
– Replicated data store management
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Server Selection Primer
• Can happen at multiple places
• Server resolution process: DNS -> External IP -> 

Internal IP
• DNS
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IP Anycast
• BGP (Border Gateway Protocol) level

29

Hey, I know where 

69.63.187.17 is…

in California

Hey, I know where 

69.63.187.17 is…

in New York

CSE 486/586

Inside
• Load balancers
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Example: Facebook
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Example: Facebook Geo-Replication
• (At least in 2008) Lazy primary-backup replication
• All writes go to California, then get propagated.
• Reads can go anywhere (probably to the closest 

one).
• Ensure (probably sequential) consistency through 

timestamps
– Set a browser cookie when there’s a write
– If within the last 20 seconds, reads go to California.

• http://www.facebook.com/note.php?note_id=238443
38919
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Core Issue: Handling Replication
• Replication is (almost) inevitable.

– Failures, performance, load balance, etc.

• We will look at this in the next few weeks.
• Data replication

– Read/write can go to any server.
– How to provide a consistent view? (i.e., what consistency 

guarantee?) linearizability, sequential consistency, causal 
consistency, etc.

– What happens when things go wrong?
• State machine replication

– How to agree on the instructions to execute?
– How to handle failures and malicious servers?
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Summary
• NSF

– Caching with write-through policy at close()
– Stateless server till V3
– Stateful from V4
– 4.1 supports parallel I/O
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