CSE 486/586 Distributed Systems
Distributed File Systems

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Local File Systems

« File systems provides file management.
— Name space

— API for file operations (create, delete, open, close, read,
write, append, truncate, etc.)

— Physical storage management & allocation (e.g., block
storage)

— Security and protection (access control)
» Name space is usually hierarchical.
— Files and directories
« File systems are mounted.

— Different file systems can be in the same name space.

CSE 486/586

Traditional Distributed File Systems

» Goal: emulate local file system behaviors
— Files not replicated
— No hard performance guarantee
« But,
— Files located remotely on servers
— Multiple clients access the servers
« Why?
— Users with multiple machines
— Data sharing for multiple users
— Consolidated data management (e.g., in an enterprise)

CSE 486/586 3

Requirements

» Transparency: a distributed file system should
appear as if it were a local file system
— Access transparency: it should support the same set of

operations, i.e., a program that works for a local file system
should work for a DFS.

— (File) Location transparency: all clients should see the same
name space.

— Migration transparency: if files move to another server, it
shouldn’t be visible to users.

— Performance transparency: it should provide reasonably
consistent performance.

— Scaling transparency: it should be able to scale
incrementally by adding more servers.

CSE 486/586

Requirements

« Concurrent updates should be supported.

« Fault tolerance: servers may crash, msgs can be
lost, etc.

» Consistency needs to be maintained.

« Security: access-control for files & authentication of
users

CSE 486/586 5

File Server Architecture

Client computer Server computer
Application  Application Directory service
program program

Flat file service

Client module

sss

CSE 486/586




Components

« Directory service
— Meta data management
— Creates and updates directories (hierarchical file structures)
— Provides mappings between user names of files and the
unique file ids in the flat file structure.
« Flat file service
— Actual data management

— File operations (create, delete, read, write, access control,
etc.)

» These can be independently distributed.
— E.g., centralized directory service & distributed flat file

Sun NFS

Client Computer

Server Computer

Application
Program

e

irtual File System
W N 7

Application
Program

UNIX
Kernel

NFS
Protocol

Virtual File System

CSE 486/586

service
CSE 486/586 7
VFS
« Atranslation layer that makes file systems pluggable
& co-exist

— E.g., NFS, EXT2, EXT3, ZFS, etc.

» Keeps track of file systems that are available locally
and remotely.

 Passes requests to appropriate local or remote file
systems

« Distinguishes between local and remote files.

CSE 486/586 9

NFS Mount Service

yle\_udent staff

mth john bob -

Server 1

Client

nfs
/

ers

N

pet jim bob ...

ZiN
N

Server 2

Each server keeps a record of local files available for
Remote rémote mounting. Clients use a mount command for
Mount remote mounting, providing name mappings

CSE 486/586

10

NFS Basic Operations
« Client

— Transfers blocks of files to and from server via RPC
» Server

— Provides a conventional RPC interface at a well-known port
on each host

— Stores files and directories
¥+ Problems?

— Performance
— Failures

CSE 486/586 11

Improving Performance

 Let's cache!
« Server-side

— Typically done by OS & disks anyway
— A disk usually has a cache built-in.

— OS caches file pages, directories, and file attributes that
have been read from the disk in a main memory buffer

cache.
« Client-side

— On accessing data, cache it locally.

» What's a typical problem with caching?
— Consistency: cached data can become stale.

CSE 486/586




(General) Caching Strategies

» Read-ahead (prefetch)
— Read strategy

— Anticipates read accesses and fetches the pages following
those that have most recently been read.

 Delayed-write
— Write strategy
— New writes stored locally.

— Periodically or when another client accesses, send back the
updates to the server

» Write-through
— Write strategy
— Writes go all the way to the server’s disk

« This is not an exhaustive list!

CSE 486/586

NFS V3 Client-Side Caching

« We'll mainly look at NFS V3.
» Write-through, but only at close()
— Not every single write
— Helps performance (reduces network activities & traffic)
* Multiple writers
— No guarantee
— Could be any combination of (over-)writes
« Leads to inconsistency

CSE 486/586 14

Validation

« A client periodically checks with the server about
cached blocks.
Each block has a timestamp.

— If the remote block is new, then the client invalidates the
local cached block.

« Always invalidate after some period of time
— 3 seconds for files

.

— 30 seconds for directories
» Written blocks are marked as “dirty.”

CSE 486/586

&

Failures

» Two design choices: stateful & stateless
« Stateful

— The server maintains all client information (which file, which
block of the file, the offset within the block, file lock, etc.)

— Good for the client-side process (just send requests!)

— Becomes almost like a local file system (e.g., locking is easy
to implement)

» Problem?
— Server crash - lose the client state
— Becomes complicated to deal with failures

CSE 486/586 16

Failures

« Stateless

— Clients maintain their own information (which file, which
block of the file, the offset within the block, etc.)

— The server does not know anything about what a client
does.

— Each request contains complete information (file name,
offset, etc.)

— Easier to deal with server crashes (nothing to lose!)

* NFS V3's choice
* Problem?

— Locking becomes difficult.

CSE 486/586

NFS V3

« Client-side caching for improved performance
» Write-through at close()

— Consistency issue
» Stateless server

— Easier to deal with failures

— Locking is not supported (later versions of NFS support
locking though)

» Simple design

— Led to simple implementation, acceptable performance,
easier maintenance, etc.

— Ultimately led to its popularity

CSE 486/586 18




NFS V4

o Stateful system
- New APIs: open() and close()

- Locking is supported through lock(), lockt(),
locku(), renew()

- Supports read/write locks, call backs etc.

» Effective use of client side caching
o Version 4.1 (pNFS)

- Parallel NFS supports parallel file I/O
- File is striped and stored across multiple servers
- Metadata and data are separated

CSE 486/586 19

CSE 486/586 Administrivia

» Mid-semester grades will be posted by Friday.
» PA3 is due on Friday.

CSE 486/586 20

Brief Intro to Data Centers

* The rest of the semester deals with data centers a
lot.

CSE 486/586 21

Data Centers

CSE 486/586 22

Data Centers

* Hundreds of Locations in the US

[1]

m Rl e

L

Gougle o ap i £2010 AND, 517 Tochmdoges NG T i

CSE 486/586 23

Inside

 Servers in racks
— Usually ~40 blades per rack
— ToR (Top-of-Rack) switch

* Incredible amounts of engineering efforts
— Power, cooling, etc.

CSE 486/586 24




Inside

* Network

Core.

Aggregation

CSE 486/586 25

Inside

 3-tier for Web services

= :é;:@% “

=4

CSE 486/586 26

Web Services

» Amazon, Facebook, Google, Twitter, etc.
* World-wide distribution of data centers

— Load balance, fault tolerance, performance, etc.
» Replicated service & data

— Each data center might be a complete stand-alone web
service. (It depends though.)

« At the bare minimum, you're doing read/write.

» What needs to be done when you issue a read req?
— Server selection

» What needs to be done when you issue a write req?
— Server selection
— Replicated data store management

CSE 486/586 27

Server Selection Primer

» Can happen at multiple places
« Server resolution process: DNS -> External IP ->

IP Anycast

« BGP (Border Gateway Protocol) level

P
\%D‘P Hey, | know where
z:?‘""“’p EP 69.63.187.17 is...
LN in New York
Hey, | know where g Wéﬂ ps .}x_""“‘
69.63.187.17 is... m&pmaﬁ%? 2&:“’
aspo :.m ot
in California %ﬁ: —
st g ""'ﬁ = La
Cotgle + e 02010, 57 T W Tomm ot | [
CSE 486/586 29

Internal IP
« DNS
e’ —

- oL www.facebook.com
www.facebook.com e —
69.63.187.17 69.63.181.11
69.63.187.18 69-63-181-.12
69.63.187.19 = L North Carolina

California g = !
Cacgle ‘ R o= | Ty
CSE 486/586 2
Inside

* Load balancers

* 69.63.176.13

10.0.0.1 10.0.0.2 10.0.0.200

Web Servers

CSE 486/586 30



http://www.facebook.com/
http://www.facebook.com/

Example: Facebook

www.facebook.com
69.63.176.13
69.63176.14 69.63.181.11
69.63.187.17 69.63.181.12
Oregon
. : 69.63.187.18 North Carolina
69.63.187.19

California

CSE 486/586 31

Example: Facebook Geo-Replication

* (Atleast in 2008) Lazy primary-backup replication
« All writes go to California, then get propagated.

» Reads can go anywhere (probably to the closest
one).
» Ensure (probably sequential) consistency through
timestamps
— Set a browser cookie when there’s a write
— If within the last 20 seconds, reads go to California.

« http://www.facebook.com/note.php?note id=238443

38919

CSE 486/586

Core Issue: Handling Replication

 Replication is (almost) inevitable.
— Failures, performance, load balance, etc.

We will look at this in the next few weeks.

« Data replication
— Read/write can go to any server.

.

— How to provide a consistent view? (i.e., what consistency
guarantee?) linearizability, sequential consistency, causal
consistency, etc.

— What happens when things go wrong?

« State machine replication
— How to agree on the instructions to execute?
— How to handle failures and malicious servers?

CSE 486/586 33

Summary
« NSF

— Caching with write-through policy at close()
— Stateless server till V3

— Stateful from V4

— 4.1 supports parallel I/O

CSE 486/586

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586 35



http://www.facebook.com/note.php?note_id=23844338919

