
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Distributed File Systems

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Local File Systems
• File systems provides file management.

– Name space
– API for file operations (create, delete, open, close, read,

write, append, truncate, etc.)
– Physical storage management & allocation (e.g., block

storage)
– Security and protection (access control)

• Name space is usually hierarchical.
– Files and directories

• File systems are mounted.
– Different file systems can be in the same name space.

2

CSE 486/586

Traditional Distributed File Systems
• Goal: emulate local file system behaviors

– Files not replicated
– No hard performance guarantee

• But,
– Files located remotely on servers
– Multiple clients access the servers

• Why?
– Users with multiple machines
– Data sharing for multiple users
– Consolidated data management (e.g., in an enterprise)

3 CSE 486/586

Requirements
• Transparency: a distributed file system should

appear as if it were a local file system
– Access transparency: it should support the same set of

operations, i.e., a program that works for a local file system
should work for a DFS.

– (File) Location transparency: all clients should see the same
name space.

– Migration transparency: if files move to another server, it
shouldn’t be visible to users.

– Performance transparency: it should provide reasonably
consistent performance.

– Scaling transparency: it should be able to scale
incrementally by adding more servers.

4

CSE 486/586

Requirements
• Concurrent updates should be supported.
• Fault tolerance: servers may crash, msgs can be

lost, etc.
• Consistency needs to be maintained.
• Security: access-control for files & authentication of

users

5 CSE 486/586

File Server Architecture

6

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

C 2

CSE 486/586

Components
• Directory service

– Meta data management
– Creates and updates directories (hierarchical file structures)
– Provides mappings between user names of files and the

unique file ids in the flat file structure.

• Flat file service
– Actual data management
– File operations (create, delete, read, write, access control,

etc.)

• These can be independently distributed.
– E.g., centralized directory service & distributed flat file

service

7 CSE 486/586

Sun NFS

8

Application
Program

Application
Program

Virtual File System

UNIX
File
System

Other
File
System

NFS
Client
System

Client Computer

Virtual File System

NFS
Server
System

UNIX
File
System

Server Computer

NFS
Protocol

UNIX
Kernel

CSE 486/586

VFS
• A translation layer that makes file systems pluggable

& co-exist
– E.g., NFS, EXT2, EXT3, ZFS, etc.

• Keeps track of file systems that are available locally
and remotely.

• Passes requests to appropriate local or remote file
systems

• Distinguishes between local and remote files.

9 CSE 486/586

NFS Mount Service

10

...

/

student

usr

…

/

users

nfs

pet jim bob

staff

/

people

org

mth john bob

Each server keeps a record of local files available for
remote mounting. Clients use a mount command for
remote mounting, providing name mappings

Remote
Mount

Server 1 Client Server 2

CSE 486/586

NFS Basic Operations
• Client

– Transfers blocks of files to and from server via RPC

• Server
– Provides a conventional RPC interface at a well-known port

on each host
– Stores files and directories

• Problems?
– Performance
– Failures

11 CSE 486/586

Improving Performance
• Let’s cache!
• Server-side

– Typically done by OS & disks anyway
– A disk usually has a cache built-in.
– OS caches file pages, directories, and file attributes that

have been read from the disk in a main memory buffer
cache.

• Client-side
– On accessing data, cache it locally.

• What’s a typical problem with caching?
– Consistency: cached data can become stale.

12

C 3

CSE 486/586

(General) Caching Strategies
• Read-ahead (prefetch)

– Read strategy
– Anticipates read accesses and fetches the pages following

those that have most recently been read.

• Delayed-write
– Write strategy
– New writes stored locally.
– Periodically or when another client accesses, send back the

updates to the server

• Write-through
– Write strategy
– Writes go all the way to the server’s disk

• This is not an exhaustive list!

13 CSE 486/586

NFS V3 Client-Side Caching
• We’ll mainly look at NFS V3.
• Write-through, but only at close()

– Not every single write
– Helps performance (reduces network activities & traffic)

• Multiple writers
– No guarantee
– Could be any combination of (over-)writes

• Leads to inconsistency

14

CSE 486/586

Validation
• A client periodically checks with the server about

cached blocks.
• Each block has a timestamp.

– If the remote block is new, then the client invalidates the
local cached block.

• Always invalidate after some period of time
– 3 seconds for files
– 30 seconds for directories

• Written blocks are marked as “dirty.”

15 CSE 486/586

Failures
• Two design choices: stateful & stateless

• Stateful
– The server maintains all client information (which file, which

block of the file, the offset within the block, file lock, etc.)

– Good for the client-side process (just send requests!)

– Becomes almost like a local file system (e.g., locking is easy
to implement)

• Problem?
– Server crash à lose the client state

– Becomes complicated to deal with failures

16

CSE 486/586

Failures
• Stateless

– Clients maintain their own information (which file, which
block of the file, the offset within the block, etc.)

– The server does not know anything about what a client
does.

– Each request contains complete information (file name,
offset, etc.)

– Easier to deal with server crashes (nothing to lose!)

• NFS V3’s choice
• Problem?

– Locking becomes difficult.

17 CSE 486/586

NFS V3
• Client-side caching for improved performance

• Write-through at close()

– Consistency issue

• Stateless server

– Easier to deal with failures

– Locking is not supported (later versions of NFS support

locking though)

• Simple design

– Led to simple implementation, acceptable performance,

easier maintenance, etc.

– Ultimately led to its popularity

18

C 4

CSE 486/586

NFS V4
• Stateful system

- New APIs: open() and close()

- Locking is supported through lock(), lockt(),

locku(), renew()

- Supports read/write locks, call backs etc.

• Effective use of client side caching

• Version 4.1 (pNFS)

- Parallel NFS supports parallel file I/O

- File is striped and stored across multiple servers

- Metadata and data are separated

19 CSE 486/586

CSE 486/586 Administrivia
• Mid-semester grades will be posted by Friday.
• PA3 is due on Friday.

20

CSE 486/586

Brief Intro to Data Centers
• The rest of the semester deals with data centers a

lot.

21 CSE 486/586

Data Centers

22

• Buildings full of machines

CSE 486/586

Data Centers
• Hundreds of Locations in the US

23 CSE 486/586

Inside
• Servers in racks

– Usually ~40 blades per rack
– ToR (Top-of-Rack) switch

• Incredible amounts of engineering efforts
– Power, cooling, etc.

24

C 5

CSE 486/586

Inside
• Network

25 CSE 486/586

Inside
• 3-tier for Web services

26

CSE 486/586

Web Services
• Amazon, Facebook, Google, Twitter, etc.
• World-wide distribution of data centers

– Load balance, fault tolerance, performance, etc.

• Replicated service & data
– Each data center might be a complete stand-alone web

service. (It depends though.)

• At the bare minimum, you’re doing read/write.
• What needs to be done when you issue a read req?

– Server selection

• What needs to be done when you issue a write req?
– Server selection
– Replicated data store management

27 CSE 486/586

Server Selection Primer
• Can happen at multiple places
• Server resolution process: DNS -> External IP ->

Internal IP
• DNS

28

www.facebook.com

69.63.187.17

69.63.187.18

69.63.187.19

California

www.facebook.com

69.63.181.11

69.63.181.12

North Carolina

CSE 486/586

IP Anycast
• BGP (Border Gateway Protocol) level

29

Hey, I know where

69.63.187.17 is…

in California

Hey, I know where

69.63.187.17 is…

in New York

CSE 486/586

Inside
• Load balancers

30

69.63.176.13

Web Servers

10.0.0.1 10.0.0.2 10.0.0.200

http://www.facebook.com/
http://www.facebook.com/

C 6

CSE 486/586

Example: Facebook

31

69.63.176.13

69.63.176.14

Oregon

69.63.181.11

69.63.181.12

North Carolina

69.63.187.17

69.63.187.18

69.63.187.19

California

www.facebook.com

CSE 486/586

Example: Facebook Geo-Replication
• (At least in 2008) Lazy primary-backup replication
• All writes go to California, then get propagated.
• Reads can go anywhere (probably to the closest

one).
• Ensure (probably sequential) consistency through

timestamps
– Set a browser cookie when there’s a write
– If within the last 20 seconds, reads go to California.

• http://www.facebook.com/note.php?note_id=238443
38919

32

CSE 486/586

Core Issue: Handling Replication
• Replication is (almost) inevitable.

– Failures, performance, load balance, etc.

• We will look at this in the next few weeks.
• Data replication

– Read/write can go to any server.
– How to provide a consistent view? (i.e., what consistency

guarantee?) linearizability, sequential consistency, causal
consistency, etc.

– What happens when things go wrong?
• State machine replication

– How to agree on the instructions to execute?
– How to handle failures and malicious servers?

33 CSE 486/586

Summary
• NSF

– Caching with write-through policy at close()
– Stateless server till V3
– Stateful from V4
– 4.1 supports parallel I/O

34

CSE 486/586 35

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

http://www.facebook.com/note.php?note_id=23844338919

