
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Consistency --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Consistency with Data Replicas

2

Client Front End RM

RM

RM
Client Front End

Client Front End

Service
server

server

server

Replica Manager

• Consider that this is a distributed storage system that
serves read/write requests.

• Multiple copies of a same object stored at different
servers

• Question: How to maintain consistency across different
data replicas?

CSE 486/586

Consistency
• Why replicate?
• Increased availability of service. When servers fail or

when the network is partitioned.
– P: probability that one server fails à 1 – P= availability of

service. e.g. P = 5% => service is available 95% of the time.
– Pn: probability that n servers fail à 1 – Pn= availability of

service. e.g. P = 5%, n = 3 => service available 99.875% of
the time

• Fault tolerance
– Under the fail-stop model, if up to f of f+1 servers crash, at

least one is alive.

• Load balancing
– One approach: Multiple server IPs can be assigned to the

same name in DNS, which returns answers round-robin.

3 CSE 486/586

This Week
• We will look at different consistency guarantees

(models).
• We’ll start from the strongest guarantee, and

gradually relax the guarantees.
– Linearizability (or sometimes called strong consistency)
– Sequential consistency
– Causal consistency
– Eventual consistency

• Different applications need different consistency
guarantees.

• This is all about client-side perception.
– When a read occurs, what do you return?

• First
– Linearizability: we’ll look at the concept first, then how to

implement it later. 4

CSE 486/586

Our Expectation with Data
• Consider a single process using a filesystem
• What do you expect to read?

• Our expectation (as a user or a developer)
• A read operation returns the most recent write.
• This forms our basic expectation from any file or storage

system.

• Linearizability meets this basic expectation.
• But it extends the expectation to handle multiple

processes…
• …and multiple replicas.
• The strongest consistency model

5

P1
x.write(2) x.read() ?

CSE 486/586

Expectation with Multiple Processes
• What do you expect to read?

– A single filesystem with multiple processes

• Our expectation (as a user or a developer)

• A read operation returns the most recent write, regardless

of the clients.

• We expect that a read operation returns the most recent

write according to the single actual-time order.

• In other words, read/write should behave as if there were a

single (combined) client making all the requests.

• It’s easiest to understand and program for a developer if

your storage appears to process one request at a time.

6

P1

x.write(5)

P2

x.write(2) x.read() ?

C 2

CSE 486/586

Expectation with Multiple Copies
• What do you expect to read?

– A single process with multiple servers with copies

• Our expectation (as a user or a developer)

• A read operation returns the most recent write, regardless

of how many copies there are.

• Read/write should behave as if there were a single copy.

7

P1

x.write(2) x.read() ?

CSE 486/586

Linearizability
• Three aspects

– A read operation returns the most recent write,

– …regardless of the clients,

– …according to the single actual-time ordering of requests.

• Or, put it differently, read/write should behave as if
there were,

– …a single client making all the (combined) requests in their
original actual-time order (i.e., with a single stream of ops),

– …over a single copy.

• You can say that your storage system guarantees
linearizability when it provides single-client, single-
copy semantics where a read returns the most recent
write.

– It should appear to all clients that there is a single order
(actual-time order) that your storage uses to process all
requests. 8

CSE 486/586

Linearizability Exercise
• Assume that the following happened with object x

over a linearizable storage.
– C1: x.write(A)
– C2: x.write(B)
– C3: x.read() à B, x.read() à A
– C4: x.read() à B, x.read() à A

• What would be an actual-time ordering of the
events?

– One possibility: C2 (write B) -> C3 (read B) -> C4 (read B) ->
C1 (write A) -> C3 (read A) -> C4 (read A)

• How about the following?
– C1: x.write(A)
– C2: x.write(B)
– C3: x.read() à B, x.read() à A
– C4: x.read() à A, x.read() à B 9 CSE 486/586

CSE 486/586 Administrivia
• PA4 deadline: 5/10 (Friday)
• No recitation today

– Will hold office hours for undergrads from 2:30 pm to 4 pm
– Regular office hours from 4 pm to 5 pm for midterm

questions

• Academic integrity for PA2B

10

CSE 486/586

Linearizability Subtleties
• Notice any problem with the representation?

11North CarolinaCalifornia

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) ?

CSE 486/586

Linearizability Subtleties
• A read/write operation is never a dot!

– It takes time. Many things are involved, e.g., network,
multiple disks, etc.

– Read/write latency: the time measured right before the call
and right after the call from the client making the call.

• Clear-cut (e.g., black---write & red---read)

• Not-so-clear-cut (parallel)
– Case 1:

– Case 2:

– Case 3:
12

C 3

CSE 486/586

Linearizability Subtleties
• With a single process and a single copy, can

overlaps happen?
– No, these are cases that do not arise with a single process

and a single copy.
– “Most recent write” becomes unclear when there are

overlapping operations.

• Thus, we (as a system designer) have freedom to
impose an order.

– As long as it appears to all clients that there is a single,
interleaved ordering for all (overlapping and non-
overlapping) operations that your implementation uses to
process all requests, it’s fine.

– I.e., this ordering should still provide the single-client, single-
copy semantics.

– Again, it’s all about how clients perceive the behavior of your
system.

13 CSE 486/586

Linearizability Subtleties
• Definite guarantee

• Relaxed guarantee when overlap
• Case 1

• Case 2

• Case 3

14

CSE 486/586

Linearizability Examples
• Example 1: if your system behaves this way with 3

clients…

• Example 2: if your system behaves this way with 3
clients…

15

a.write(x)

a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x

If this were
a.read() -> 0,
would it support
linearizability?

No

CSE 486/586

Linearizability Examples
• In example 2, what are the constraints?

• Constraints (some ops don’t overlap)
– a.read() à 0 happens before a.read() àx (you need to be

able to explain why that happens that way).
– a.read() à x happens before a.read() àx (you need to be

able to explain why that happens that way).
– The rest are up for grabs.

• Scenario
– Every client deals with a different copy of a.
– a.write(x) gets propagated to (last client’s) a.read() -> x first.
– a.write(x) gets propagated to (the second process’s) a.read()

-> x, right after a.read() -> 0 is done.

16

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

CSE 486/586

Linearizability Examples
• In example 2, why would a.read() return 0 and x

when they’re overlapping?

• This assumes that there’s a particular storage
system that shows this behavior.

• At some point between a read/write request sent and
returned, the result becomes visible.

– E.g., you read a value from physical storage, prepare it for
return (e.g., putting it in a return packet, i.e., making it
visible), and actually return it.

– Or you actually write a value to a physical disk, making it
visible (out of multiple disks, which might actually write at
different points).

17

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

CSE 486/586

Linearizability Examples
• Example 3

• Constraints (ops that don’t overlap)
– a.read() à x and a.read() à x: we cannot change these.
– a.read() à y and a.read() à x: we cannot change these.
– The rest is up for grabs.

18

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)

C 4

CSE 486/586

Linearizability (Textbook Definition)
• Let the sequence of read and update operations that

client i performs in some execution be oi1, oi2,….
– "Program order" for the client

• A replicated shared object service is linearizable if for
any execution (real), there is some interleaving of
operations (virtual) issued by all clients that:

– meets the specification of a single correct copy of objects
– is consistent with the actual times at which each operation

occurred during the execution

• Main goal: any client will see (at any point of time) a
copy of the object that is correct and consistent

• The strongest form of consistency

19 CSE 486/586

Summary
• Linearizability

– Single-client, Single-copy semantics

• A read operation returns the most recent write,
regardless of the clients, according to their actual-
time ordering.

20

CSE 486/586 21

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

