
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Consistency --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Implementing Linearizability
• Will this be difficult to implement?

2North CarolinaCalifornia

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) à 5

CSE 486/586

Implementing Linearizability
• Will this be difficult to implement?

– It depends on what you want to provide.

• How about:
– All clients send all read/write to CA datacenter.
– CA datacenter propagates to NC datacenter.
– A request never returns until all propagation is done.
– Correctness (linearizability)? yes
– Performance? No

3

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) à 5

CSE 486/586

Implementing Linearizability
• Importance of latency

– Amazon: every 100ms of latency costs them 1% in sales.
– Google: an extra .5 seconds in search page generation time

dropped traffic by 20%.

• Linearizability typically requires complete
synchronization of multiple copies before a write
operation returns.

– So that any read over any copy can return the most recent
write.

– No room for asynchronous writes (i.e., a write operation
returns before all updates are propagated.)

• It makes less sense in a global setting.
– Inter-datecenter latency: ~10s ms to ~100s ms

• It might still makes sense in a local setting (e.g.,
within a single data center).

4

CSE 486/586

Passive (Primary-Backup)
Replication

• Request Communication: the request is issued to the
primary RM and carries a unique request id.

• Coordination: Primary takes requests atomically, in
order, checks id (resends response if not new id.)

• Execution: Primary executes & stores the response
• Agreement: If update, primary sends updated

state/result, req-id and response to all backup RMs
(1-phase commit enough).

• Response: primary sends result to the front end
5

Client Front End
RM

RM

RM
Client Front End RM

primary

Backup

Backup
Backup

….

CSE 486/586

Chain Replication
• One technique to provide linearizability with better

performance
– All writes go to the head.

– All reads go to the tail.

• Linearizability?
– Clear-cut cases: straightforward

– Overlapping ops?

6

N0 N1 N2

Reads RepliesWrites

Head Tail

C 2

CSE 486/586

Chain Replication

• What ordering does this have for overlapping ops?
– We have freedom to impose an order.
– Case 1: A write is at either N0 or N1, and a read is at N2.

The ordering we’re imposing is read then write.
– Case 2: A write is at N2 and a read is also at N2. The

ordering we’re imposing is write then read.

• Linearizability
– Once a write becomes visible (at the tail), all following reads

get the write result.
7

N0 N1 N2

Reads RepliesWrites

Head Tail

CSE 486/586

CSE 486/586 Administrivia
• PA4 deadline: 5/10 (Friday)
• 486/586 survey

8

CSE 486/586

Relaxing the Guarantees
• Do we need linearizability?

• Does it matter if I see some posts some time later?
• Does everyone need to see these in this particular

order? 9 CSE 486/586

Relaxing the Guarantees
• Linearizability advantages

– It behaves as expected.

– There’s really no surprise.

– Application developers do not need any additional logic.

• Linearizability disadvantages

– It’s difficult to provide high-performance (low latency).

– It might be more than what is necessary.

• Relaxed consistency guarantees

– Sequential consistency

– Causal consistency

– Eventual consistency

• It is still all about client-side perception.

– When a read occurs, what do you return?

10

CSE 486/586

Sequential Consistency
• A little weaker than linearizability, but still quite strong

– Essentially linearizability, except that it doesn’t need to
return the most recent write according to physical time.

• How can we achieve it?
– Preserving the single-client, (per-process) single-copy

semantics
– We give an illusion that there’s a single copy to an isolated

process.

• The single-client semantics
– Processing all requests as if they were coming from a single

client (in a single stream of ops).

– Again, this meets our basic expectation---it’s easiest to
understand for an app developer if all requests appear to be
processed one at a time.

• Let’s consider the per-process single-copy semantics
with a few examples. 11 CSE 486/586

Per-Process Single-Copy Semantics
• Consider the following single process.

• What do you expect to read?
– 3, not 2
– Why even consider 2? E.g., if there were two copies not

synchronized correctly, two writes could be applied to
different copies.

• Why 3 then?
– It’s the program order.

• Per-process single-copy semantics
– When a storage system preserves a process’s program

order, the process will believe that there’s a single copy.
12

P1
x.write(2) x.read() à ?x.write(3)

C 3

CSE 486/586

Per-Process Single-Copy Semantics
• But we need to make it work with multiple processes.

– When a storage system preserves each and every process’s
program order, each will think that there’s a single copy.

• Simple example

• Per-process single-copy semantics
– A storage system preserves each and every process’s

program order.
– It gives an illusion to every process that they’re working with

a single copy.

13

P1
x.write(2) x.read() à 3x.write(3)

P2
x.write(5) x.read() à 5

CSE 486/586

Pre-Process Single-Copy Examples
• Example 1: Does this work like a single copy at P2?

• Yes!

• Does this satisfy linearizability?
– Yes

14

P1

x.write(5)

P2

x.write(2) x.read() à 3x.write(3) x.read() à 3

CSE 486/586

Pre-Process Single-Copy Examples
• Example 2: Does this work like a single copy at P2?

• Yes!
• Does this satisfy linearizability?

– No
• It’s just that P1’s write is showing up later.

– For P2, it’s like x.write(5) happens between the last two
reads.

– It’s also like P1 and P2’s operations are interleaved and
processed like the arrow shows.

15

P1
x.write(5)

P2
x.write(2) x.read() à 3x.write(3) x.read() à 5

CSE 486/586

Sequential Consistency
• Insight: we don’t need to make other processes’

writes immediately visible.

• Central question

– Can you explain a storage system’s behavior by coming up

with a single interleaving ordering of all requests, where the

program order of each and every process is preserved?

• Previous example:

• We can explain this behavior by the following
ordering of requests

– x.write(2), x.write(3), x.read() à 3, x.write(5), x.read() à 5
16

P1

x.write(5)

P2

x.write(2) x.read() à 3x.write(3) x.read() à 5

CSE 486/586

Sequential Consistency
• Combining everything

– Single-client semantics
– Per-process single-copy semantics

• Single-client semantics
– All requests appear to come from a single client with a single

interleaving of all requests.
– I.e., all requests appear be processed one at a time.

• Per-process single-copy semantics
– In the single interleaving, the program order of each and

every process is preserved.
– This is delayed write visibility. In the single interleaving, all

program orders are only logically preserved.

17 CSE 486/586

Sequential Consistency Examples
• Example 1: Does this satisfy sequential consistency?

• No: even if P1’s writes show up later, we can’t
explain the last two writes.

18

P1
x.write(5)

P2
x.write(2) x.read() à 3

x.write(3)

x.read() à 5

C 4

CSE 486/586

Sequential Consistency Examples
• Example 2: Does this satisfy sequential consistency?

• Yes

19

P1
x.write(2) x.read() à 3x.write(3)

P2
x.write(5) x.read() à 5

CSE 486/586

Sequential Consistency Examples
• Example 3

– P1: a.write(A)
– P2: a.write(B)
– P3: a.read()->B a.read()->A
– P4: a.read()->B a.read()->A

• Example 4
– P1: a.write(A)
– P2: a.write(B)
– P3: a.read()->B a.read()->A
– P4: a.read()->A a.read()->B

20

CSE 486/586

Sequential Consistency
• Your storage appears to process all requests in a

single interleaved ordering (single client), where…
– …each and every process’s program order is preserved

(single copy),
– …and each process’s program order is only logically

preserved, i.e., it doesn’t need to preserve its physical-time
ordering.

• It works as if all clients are reading out of a single
copy.

– This meets the expectation from an (isolated) client, working
with a single copy.

– Linearizability meets the expectation of all clients even if
they all know what others are doing.

– Both sequential consistency and linearizability provide an
illusion of a single copy.

21 CSE 486/586

Sequential Consistency vs.
Linearizability
• Both should behave as if there were only a single

copy, and a single client.
– It’s just that SC doesn’t preserve the physical-time order, but

just the program order of each client.

• Difference

– Linearizability: Once a write is returned, the system is
obligated to make the result visible to all clients based on
physical time. I.e., the system has to return 5 in the
example.

– Sequential consistency: Even if a write is returned, the
system is not obligated to make the result visible to other
clients immediately. I.e., the system can still return 2 in the
example. 22

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) ?

CSE 486/586

Implementing Sequential
Consistency
• In what implementation would the following happen?

– P1: a.write(A)

– P2: a.write(B)

– P3: a.read()->B a.read()->A

– P4: a.read()->A a.read()->B

• Possibility

– P3 and P4 use different copies.

– In P3’s copy, P2’s write arrives first and gets applied.

– In P4’s copy, P1’s write arrives first and gets applied.

– Writes are applied in different orders across copies.

– This doesn’t provide sequential consistency.

23 CSE 486/586

Implementing Sequential
Consistency
• When implementing a consistency model, we need to

think about how to handle writes and how to handle
reads

• Handling writes
– Single-client, per-process single-copy: Write synchronization

happens (or writes are applied) in the same order
everywhere across different copies, while preserving each
process’s logical write order.

– The synchronization does not have to be complete at the
time of return from a write operation. (I.e., actual writes on
different copies can be done at different times.)

• Handling reads
– Single-client, per-process single-copy: A read from a

process should be done on a copy that already has applied
the process’s latest write. And all reads should be processed
by the program order.

24

C 5

CSE 486/586

Implementing Sequential
Consistency
• Typical implementation

– You’re not obligated to make the most recent write
(according to physical time) visible (i.e., applied to all
copies) right away.

– But you are obligated to apply all writes in the same order
for all copies.

– What is this ordering guarantee?
» FIFO-total.

25 CSE 486/586

Active Replication

• A front end FIFO-orders all reads and writes.
• A read can be done completely with any single replica.
• Writes are totally-ordered and asynchronous (after at

least one write completes, it returns).
– Total ordering doesn’t determine deliver times, i.e., writes can

happen at different times at different replicas.
• Sequential consistency, not linearizability

– Read/write ops from the same client will be ordered at the front
end (program order preservation).

– Writes are applied in the same order by total ordering (single
copy).

– No guarantee that a read will read the most recent write based
on actual time. 26

Client Front End RM

RM

Client Front End RM

….

CSE 486/586

Two More Consistency Models
• Even more relaxed

– We don’t even care about providing an illusion of a single
copy.

• Causal consistency
– We care about ordering causally related write operations

correctly.

• Eventual consistency
– As long as we can say all replicas converge to the same

copy eventually, we’re fine.

27 CSE 486/586

Summary
• Linearizability

– The ordering of operations is determined by time.
– Primary-backup can provide linearizability.
– Chain replication can also provide linearizability.

• Sequential consistency
– The ordering of operations preserves the program order of

each client.
– Active replication can provide sequential consistency.

28

CSE 486/586 29

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

