
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Case Study: Amazon Dynamo

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
• CAP Theorem?

– Consistency, Availability, Partition Tolerance
– P then C? A?

• Eventual consistency?
– Availability and partition tolerance over consistency

2

CSE 486/586

Amazon Dynamo
• Distributed key-value storage

– Only accessible with the primary key
– put(key, value) & get(key)

• Used for many Amazon services (“applications”)
– Shopping cart, best seller lists, customer preferences, 

product catalog, etc.
– Now in AWS as well (DynamoDB) (if interested, read 

http://www.allthingsdistributed.com/2012/01/amazon-
dynamodb.html)

• With other Google systems (GFS & Bigtable), 
Dynamo marks one of the first non-relational storage 
systems (a.k.a. NoSQL)

3 CSE 486/586

Amazon Dynamo
• A synthesis of techniques we discuss in class

– Very good example of developing a principled distributed 
system

– Comprehensive picture of what it means to design a 
distributed storage system

• Main motivation: shopping cart service
– 3 million checkouts in a single day
– Hundreds of thousands of concurrent active sessions

• Properties (in the CAP theorem sense)
– Eventual consistency
– Partition tolerance
– Availability (“always-on” experience)

4

CSE 486/586

Necessary Pieces?
• We want to design a storage service on a cluster of 

servers
• What do we need?

– Membership maintenance

– Object insert/lookup/delete

– (Some) Consistency with replication

– Partition tolerance

• Dynamo is a good example as a working system.

5 CSE 486/586

Overview of Key Design Techniques
• Gossiping for membership and failure detection

– Eventually-consistent membership
• Consistent hashing for node & key distribution

– Similar to Chord
– But there’s no ring-based routing; everyone knows everyone 

else
• Object versioning for eventually-consistent data 

objects
– A vector clock associated with each object

• Quorums for partition/failure tolerance
– Called “sloppy” quorum

• Merkel tree for resynchronization after 
failures/partitions

– (This was not covered in class yet)

6

http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html


C 2

CSE 486/586

Membership
• Nodes are organized as a ring just like Chord using 

consistent hashing
• But everyone knows everyone else.
• Node join/leave

– Manually done
– An operator uses a console to add/delete a node
– Reason: it’s a well-maintained system; nodes come back 

pretty quickly and don’t depart permanently most of the time
• Membership change propagation

– Each node maintains its own view of the membership & the 
history of the membership changes

– Propagated using gossiping (every second, pick random 
targets)

• Eventually-consistent membership protocol
7 CSE 486/586

Failure Detection
• Does not use a separate protocol; each request 

serves as a ping
– Dynamo has enough requests at any moment anyway

• If a node doesn’t respond to a request, it is 
considered to be failed.

8

CSE 486/586

Node & Key Distribution
• Original consistent hashing
• Load becomes uneven

– With a small number of nodes and/or as nodes come and 
go, each partition size becomes uneven.

9 CSE 486/586

Node & Key Distribution
• Consistent hashing with “virtual nodes” for better load 

balancing
• Start with a static number of virtual nodes uniformly 

distributed over the ring

10

CSE 486/586

Node & Key Distribution
• One node joins and gets all virtual nodes

11

Node 1

CSE 486/586

Node & Key Distribution
• One more node joins and gets 1/2

12

Node 1
Node 2



C 3

CSE 486/586

Node & Key Distribution
• One more node joins and gets 1/3 (roughly) from the 

other two

13

Node 1
Node 2
Node 3

CSE 486/586

CSE 486/586 Administrivia
• PA3 grading is going on.
• PA4 deadline: 5/10

– Please start early. Grader takes a long, long time.

14

CSE 486/586

Replication
• N: # of replicas; configurable
• The first is stored regularly with consistent hashing
• N-1 replicas are stored in the N-1 (physical) 

successor nodes (called preference list)

15 CSE 486/586

Replication
• Any server can handle read/write in the preference 

list, but it walks over the ring
– E.g., try B first, then C, then D, etc.

• Update propagation: by the server that handled the 
request

16

CSE 486/586

Replication
• Dynamo’s replication is lazy.

– A put() request is returned “right away” (more on this later); it 
does not wait until the update is propagated to the replicas.

– As long as there’s one reachable server, a write is done.

– This could lead to inconsistency

17 CSE 486/586

Object Versioning
• Writes should succeed all the time

– E.g., “Add to Cart” as long as there’s at least one reachable 
server

• Object versioning is used to reconcile inconsistency.
• Each object has a vector clock

– E.g., D1 ([Sx, 1], [Sy, 1]): Object D (version 1) has written 
once by server Sx and Sy.

– Each node keeps all versions until the data becomes 
consistent

– I.e., no overwrite, almost like each write creates a new 
object

• Causally concurrent versions: inconsistency
– I.e., there are writes not causally related.

• If inconsistent, reconcile later.
– E.g., deleted items might reappear in the shopping cart. 18



C 4

CSE 486/586

Object Versioning
• Example

19 CSE 486/586

Conflict Detection & Resolution
• Object versioning gives the ability to detect write 

conflicts.
• Reconciliation

– Simple resolution done by the system (last-write-wins policy)

– Complex resolution done by each application: System 
presents all conflicting versions of data to an application.

20

CSE 486/586

Object Versioning Experience
• Over a 24-hour period
• 99.94% of requests saw exactly one version
• 0.00057% saw 2 versions
• 0.00047% saw 3 versions
• 0.00009% saw 4 versions
• Usually triggered by many concurrent requests 

issued by robots, not human clients

21 CSE 486/586

Quorums
• Parameters

– N replicas
– R readers
– W writers

• Static quorum approach: R + W > N
• Typical Dynamo configuration: (N, R, W) == (3, 2, 2)
• But it depends

– High performance read (e.g., write-once, read-many): R==1, 
W==N

– Low R & W might lead to more inconsistency

• Dealing with failures
– Another node in the preference list handles the requests 

temporarily
– Delivers the replicas to the original node upon recovery

22

CSE 486/586

Replica Synchronization
• Key ranges are replicated.
• Say, a node fails and recovers, a node needs to 

quickly determine whether it needs to resynchronize 
or not.

– Transferring entire (key, value) pairs for comparison is not 
an option

• Merkel trees
– Leaves are hashes of values of individual keys
– Parents are hashes of (immediate) children
– Comparison of parents at the same level tells the difference 

in children
– Does not require transferring entire (key, value) pairs

23 CSE 486/586

Replica Synchronization
• Comparing two nodes that are synchronized

– Two (key, value) pairs: (k0, v0) & (k1, v1)

24

h0 = hash(v0) h1 = hash(v1)

h2 = hash(h0 + h1)

h0 = hash(v0) h1 = hash(v1)

h2 = hash(h0 + h1)

Node0 Node1

Equal



C 5

CSE 486/586

Replica Synchronization
• Comparing two nodes that are not synchronized

– One: (k0, v2) & (k1, v1)
– The other: (k0, v0) & (k1, v1)

25

h3 = hash(v2) h1 = hash(v1)

h4 = hash(h2 + h1)

h0 = hash(v0) h1 = hash(v1)

h2 = hash(h0 + h1)

Node0 Node1

Not equal

CSE 486/586

Summary
• Amazon Dynamo

– Distributed key-value storage with eventual consistency

• Techniques
– Gossiping for membership and failure detection
– Consistent hashing for node & key distribution

– Object versioning for eventually-consistent data objects
– Quorums for partition/failure tolerance
– Merkel tree for resynchronization after failures/partitions

• Very good example of developing a principled 
distributed system

26

CSE 486/586 27

Acknowledgements
• These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC).


