
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Distributed Shared Memory

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Overview
• Today: distributed shared memory, starting from 

some background on memory sharing
• Memory sharing for a single machine

– Threads and processes

• Memory sharing for different machines
– Threads and processes

2

CSE 486/586

Why Shared Memory?
• For sharing data
• There are two strategies for data sharing.

– Message passing

– Shared memory

• Message passing
– Send/receive primitives

– Explicit sharing à no synchronization (locks) necessary

• Shared memory
– Memory read/write primitives (in your code, you could use 

regular variables)

– Typically requires explicit synchronization (locks)

• Which is better?
– Depends on your use case.

– Multiple writers: perhaps message passing

– (Mostly) read-only data: shared memory

3 CSE 486/586

Memory Sharing for Threads
• Threads belong to a single process, so all threads 

share the same memory address space.
• E.g., Java threads

class MyThread extends Thread {
HashMap hm;
MyThread(HashMap _hm ) {

this.hm = _hm;
}
public void run() {

…
hm.put(key, value);

}
}

HashMap hashMap = new HashMap();
MyThread mt0 = new MyThread(hashMap); // hashMap is shared
MyThread mt1 = new MyThread(hashMap);
mt0.start();
mt1.start(); 4

CSE 486/586

Memory: Threads vs. Processes
• For threads, there’s no special mechanism 

necessary to share memory.
– Note: Languages like Java provide constructs to create 

thread-specific variables because by default memory is 
shared across different threads.

– ThreadLocal for Java: if a shared object has a ThreadLocal
variable, it will be specific to each thread.

• But, a process has its own address space, so by 
default, different processes do not share memory.

• Processes (on the same machine) can share 
memory regions with support from their OS.

5 CSE 486/586

Shared Memory on a Single Machine
• Shared memory is part of IPC (Inter-Process 

Communication).
– What are other IPC mechanisms?
– Files, (domain) sockets, pipes, etc.

• Shared memory API (POSIX C)
– shm_open(): create and open a new object, or open an 

existing object. The call returns a file descriptor.
– mmap(): map the shared memory object into the virtual 

address space of the calling process.
– …and others

• Semaphore API (POSIX C)
– sem_open(): initialize and open a named semaphore
– sem_wait(): lock a semaphore
– sem_post(): unlock a semaphore
– …and others 6



C 2

CSE 486/586

Shared Memory Example* (in C)
int main() {

const char *name = “shared”; // shared with other processes

int shm_fd;

void *ptr;

/* create the shared memory segment. name is shared. */

shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

…

/* now map the shared memory segment in the address space of

the process */

ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,

MAP_SHARED, shm_fd, 0);

sprintf(ptr,"%s",message0);

return 0;

}

7
*Adapted from http://www.os-book.com CSE 486/586

Shared Memory Implementation

• VPFN: Virtual page frame number

• PFN: Physical page frame number
• Adapted from http://tldp.org/LDP/tlk/mm/memory.html

8

Process X Process Y

Process X
Page table

Process Y
Page table

Virtual memory Physical memory Virtual memory

VPFN0

VPFN1

VPFN2

VPFN3

VPFN4

VPFN5

VPFN6

VPFN7

VPFN0

VPFN1

VPFN2

VPFN3

VPFN4

VPFN5

VPFN6

VPFN7

PFN0

PFN1

PFN2

PFN3

PFN4

CSE 486/586

Shared Memory Use Case: Android
• All apps need framework API libraries, Java VM, etc.

– Too expensive if all app processes have them in their 
memory space individually.

• Zygote: A process that starts everything else.
– All app processes share memory with Zygote.

9

Image source: https://www.slideshare.net/tetsu.koba/android-is-not-just-java-on-linux/19-Zygote_forkZygote_process_Child_process

CSE 486/586

CSE 486/586 Administrivia
• PA3 grades will be posted today.
• PA4 deadline: 5/10

– Please start early. The grader takes a long, long time.

• Survey & course evaluation
– Survey: https://forms.gle/eg1wHN2G8S6GVz3e9

– Course evaluation: 
https://www.smartevals.com/login.aspx?s=buffalo

• If both have 80% or more participation,
– For each of you, I’ll take the better one between the midterm 

and the final, and give the 30% weight for the better one and 
the 20% weight for the other one.

– (Currently, it’s 20% for the midterm and 30% for the final.)

• No recitation today; replaced with office hours

10

CSE 486/586

Distributed Shared Memory
• We will discuss two cases.

– DSM for processes

– DSM for threads

• DSM for processes: different processes running on 
different machines sharing a memory page.

• The shared memory page is replicated and 

synchronized across different machines.

– However, replication is not the goal (e.g., we’re not keeping 

replicas to deal with failures).

• A generic way of doing this is at the OS layer.

– Similar to the diagram on slide #8, but with processes on 

different machines

11 CSE 486/586

DSM Synchronization Options
• Write-update

– A process updates a memory page.
– The update is multicast to other replicas.
– The multicast protocol determines consistency guarantees 

(e.g., FIFO-total for sequential consistency).
– Reads are cheap (always local), but writes are costly (always 

multicast).
• Write-invalidate

– Two states for a shared page: read-only or read & write
» Read-only: the memory page is potentially replicated on two or 

more processes/machines
» Read & write: the memory page is exclusive for the process (no 

other replica)

– If a process intends to write to a read-only page, an invalidate 
request is multicast to other processes.

– Later writes can take place without communication (cheap).
– Writes are only propagated when there’s a read by another 

process (cheap for write, costly for read).
– But a write can be delayed by invalidation (costly for write). 12

https://forms.gle/eg1wHN2G8S6GVz3e9
https://www.smartevals.com/login.aspx?s=buffalo


C 3

CSE 486/586

Write Invalidate Protocol Example
• Note: R fault and W fault can occur at any process

13

Read/write 
state

Read-only 
state

R fault

W fault

Multiple readersSingle writer

R faultW fault 
(invalidation)

CSE 486/586

Example System: Ivy
• Implements a write-invalidation protocol

– Owner of a page: the process with the most up-to-date
– Copyset of a page: the processes with a replica
– A centralized manager maintains ownership info.

14

Faulting 
process

Current 
owner

Page No. Owner

Manager

1. Req: page no (R/W) 2. Req, page no (R/W)

3. Page

CSE 486/586

Granularity Problem
• Let’s assume that we operate at the page-level.

– (But other implementations also have similar problems.)
– Just as a reference, a Linux memory page is 4KB.

• Problem
– When two processes (on two different machines) share a 

page, it doesn’t always mean that they share everything on 
the page.

– E.g., one process reads from and writes to a variable X, 
while the other process reads from and writes to another 
variable Y. If they are in the same memory page, the 
processes are sharing the page.

15 CSE 486/586

Granularity Problem
• True sharing

– Two processes share the exact same data.

• False sharing
– Two processes do not share the exact same data, but they 

access different data from the same page.

• False sharing problems
– Write-invalidate: unnecessary invalidations

– Write-update: unnecessary data transfers
16

P0 P1

CSE 486/586

Granularity Problem
• Bigger page sizes

– Better handling for updates of large amounts of data (good)
– Less management overhead due to a smaller number of 

units/pages to handle (good)
– More possibility for false sharing (bad)

• Smaller page sizes
– The opposite of the above
– If there is an update of a large amount of data, it’ll be broken 

down to many small updates, which leads to more network 
overhead (bad)

– A smaller page size means more pages, which leads to 
more management overhead, i.e., more tracking of reads 
and writes (bad)

– Less possibility of false sharing (good)

17 CSE 486/586

Thrashing
• Thrashing could happen with write-invalidate 

protocols.
• Thrashing is said to occur when DSM spends an 

inordinate amount of time invalidating and 
transferring shared data compared with the time 
spent by application processes doing useful work.

• This occurs when several processes compete for a 
data item or for falsely shared data items.

18



C 4

CSE 486/586

Thrashing
• Common scenario: producer-consumer pattern

– Data is produced by a process and used by another 
process.

– The producer will keep invalidating the consumer & the 
consumer will keep transferring data from the producer.

– Write-update is better for this pattern.

• Solutions to thrashing
– Manual avoidance: a programmer avoids thrashing patterns.
– Timeslicing: once a process gains a write access to a page, 

it retains it for a period of time. Other processes’ read/write 
requests are buffered during that period.

19 CSE 486/586

DSM for Threads
• Memory sharing among threads on different 

machines.
• Use case: code (thread) offloading from a 

smartphone to a server
– Low-power smartphones augmented by high-power servers 

(computation & energy)
– It’s done already (cloud backend), but DSM allows it without 

any programmer effort.

20

Phone Server
App Helper Process

CSE 486/586

Example: Comet*
• Comet allows thread offloading for Android apps in 

Java
• Comet synchronizes the entire Java VM state.

21

*https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gordon

Mobile app 
(unmodified & 

multi-threaded)

Phone OS

Memory states

Distributed memory 
synchronization 

Offloaded 
threads

Server OS

Memory states

Distributed memory 
synchronization 

In-sync

Via network

CSE 486/586

Java Code Execution Background
• Memory: program code, stack, heap, & CPU state
• Stack & heap

– Generally, the program stack handles statically allocated 
objects & method call return addresses.

– The heap is used for dynamically allocated objects.

public class Ex {
public void method() {

int i = 0; // stack
HashMap hm = new HashMap(); // heap

}
}

• CPU state
– Android Java VM uses registers for instruction execution.
– The program counter (PC) points to the next instruction to 

execute.
• For program execution, Java VM has an execution loop.

– Fetches the next instruction that the PC points to.
– Executes the new instruction
– While executing, it uses registers, the stack, and the heap.

22

CSE 486/586

Comet Thread Migration
• Comet completely synchronizes VMs on both sides 

(phone & server).
– In Java, everything you need for program execution is stored 

in memory.
– Program code, stack, heap, & CPU state

– DSM can synchronize these.

• Any side can execute a thread, since they both know 
everything necessary for program execution.

– The PC is synchronized, so both sides know the next 
instruction to execute.

– The registers are synchronized, so they both know the CPU 
state.

– The stack & the heap are synchronized, so they know the 
memory state.

23 CSE 486/586

Summary
• Memory sharing among threads

– By default, they share the same address space

• Memory sharing among processes
– Shared memory API & semaphore API
– Virtual-physical memory mapping implements this.

• Memory sharing across machines
– Write-update
– Write-invalidate

• Memory sharing across threads on different 
machines

– Use case: code offloading

24



C 5

CSE 486/586 25

Acknowledgements
• These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC).


