CSE 486/586 Distributed Systems
Distributed Shared Memory

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Overview

» Today: distributed shared memory, starting from
some background on memory sharing

* Memory sharing for a single machine
— Threads and processes

» Memory sharing for different machines

— Threads and processes

CSE 486/586

Why Shared Memory?

« For sharing data
» There are two strategies for data sharing.

— Message passing

— Shared memory
* Message passing

— Send/receive primitives

— Explicit sharing = no synchronization (locks) necessary
» Shared memory

— Memory read/write primitives (in your code, you could use

regular variables)

— Typically requires explicit synchronization (locks)
» Which is better?

— Depends on your use case.

— Multiple writers: perhaps message passing

— (Mostly) read-only data: shared memory

CSE 486/586

Memory Sharing for Threads

» Threads belong to a single process, so all threads
share the same memory address space.

» E.g., Java threads

class MyThread extends Thread {

HashMap hm;
MyThread(HashMap _hm) {
this.hm = _hm;

}
public void run() {
Hrﬁ.put(key, value);

1

HashMap hashMap = new HashMap();
MyThread mtO = new MyThread(hashMap); // hashMap is shared
MyThread mt1 = new MyThread(hashMap);

mt0.start();
mt1 start():

TSE 2301500

Memory: Threads vs. Processes

« For threads, there’s no special mechanism
necessary to share memory.

— Note: Languages like Java provide constructs to create
thread-specific variables because by default memory is
shared across different threads.

— ThreadLocal for Java: if a shared object has a ThreadLocal
variable, it will be specific to each thread.

 But, a process has its own address space, so by
default, different processes do not share memory.

* Processes (on the same machine) can share
memory regions with support from their OS.

CSE 486/586

Shared Memory on a Single Machine

» Shared memory is part of IPC (Inter-Process
Communication).
— What are other IPC mechanisms?
— Files, (domain) sockets, pipes, etc.
» Shared memory API (POSIX C)
— shm_open(): create and open a new object, or open an
existing object. The call returns a file descriptor.

— mmap(): map the shared memory object into the virtual
address space of the calling process.

— ...and others

» Semaphore API (POSIX C)
— sem_open(): initialize and open a named semaphore
— sem_wait(): lock a semaphore

— sem_post(): unlock a semaphore

— ...and others CSE 486/586

Shared Memory Example* (in C)

int main() {
const char *name = “shared”; // shared with other processes
int shm_fd;
void *ptr;

/* create the shared memory segment. name is shared. */
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

/* now map the shared memory segment in the address space of
the process */
ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,

MAP_SHARED, shm_fd, 0);
sprintf(ptr,"%s",message0);

return 0;
}

*Adapted from http://www.os-book.com CSE 486/586 _

Shared Memory Implementation

Process X Process Y
VPFN7 | VPEN7
Process X Process Y
VPFNG Page table Page table VPFNG
VPENS | i VPFNS
VPFN4 | [PEN4 [VPFN4
VPFN3 | — PFN3 VPFN3
VPFN2 PFN2 |- VPEN2
VPFN1 PEN1 VPEN1
VPFNO | - PFNO VPFNO
Virtual memory Physical memory Virtual memory

VPFN: Virtual page frame number
PFN: Physical page frame number
Adapted from http://tidp.org/LDP/tlk/mm/memory.htmi

CSE 486/586 8

Shared Memory Use Case: Android

« All apps need framework API libraries, Java VM, etc.

— Too expensive if all app processes have them in their
memory space individually.

» Zygote: A process that starts everything else.

— All app processes share memory with Zygote.

Image source: https net/tetsu. His-not-just-j linux/19-Zygote_forkZygote_process_Child_process
Zygote
Lok

Zygote process Child process

=80 =55

_was

CSE 486/586 Administrivia

» PA3 grades will be posted today.
PA4 deadline: 5/10
— Please start early. The grader takes a long, long time.
» Survey & course evaluation
— Survey: hitps:/forms.gle/eq1wHN2G8S6GVz3e9

— Course evaluation:
https://www.smartevals.com/login.aspx?s=buffalo

« If both have 80% or more participation,

— For each of you, I'll take the better one between the midterm
and the final, and give the 30% weight for the better one and
the 20% weight for the other one.

— (Currently, it's 20% for the midterm and 30% for the final.)
No recitation today; replaced with office hours

.

.

CSE 486/586 10

Distributed Shared Memory

» We will discuss two cases.
— DSM for processes
— DSM for threads
« DSM for processes: different processes running on
different machines sharing a memory page.
» The shared memory page is replicated and
synchronized across different machines.

— However, replication is not the goal (e.g., we're not keeping
replicas to deal with failures).

« A generic way of doing this is at the OS layer.

— Similar to the diagram on slide #8, but with processes on
different machines

CSE 486/586 11

DSM Synchronization Options

« Write-update
— A process updates a memory page.
— The update is multicast to other replicas.

— The multicast protocol determines consistency guarantees
(e.g., FIFO-total for sequential consistency).

— Reads are cheap (always local), but writes are costly (always
multicast).
» Write-invalidate
— Two states for a shared page: read-only or read & write

» Read-only: the memory page is potentially replicated on two or
more processes/machines

» Read & write: the memory page is exclusive for the process (no
other replica)

— If a process intends to write to a read-only page, an invalidate
request is multicast to other processes.

— Later writes can take place without communication (cheap).

— Writes are only propagated when there’s a read by another
process (cheap for write, costly for read).

— But a write can be delaygsthygdpgglidation (costly for write). 12

https://forms.gle/eg1wHN2G8S6GVz3e9
https://www.smartevals.com/login.aspx?s=buffalo

Write Invalidate Protocol Example

* Note: R fault and W fault can occur at any process

Single writer Multiple readers
R fault

Read/write
state

Read-only

state

W fault
W fault R fault
(invalidation)

CSE 486/586 13

Example System: vy

 Implements a write-invalidation protocol
— Owner of a page: the process with the most up-to-date
— Copyset of a page: the processes with a replica
— A centralized manager maintains ownership info.

Faulting
process

Current
owner

1. Req: page no (R/W) 2. Req, page no (R/W)

Manager

Page No.| Owner

CSE 486/586 14

Granularity Problem

« Let’'s assume that we operate at the page-level.
— (But other implementations also have similar problems.)
— Just as a reference, a Linux memory page is 4KB.

» Problem

— When two processes (on two different machines) share a
page, it doesn’t always mean that they share everything on
the page.

— E.g., one process reads from and writes to a variable X,
while the other process reads from and writes to another
variable Y. If they are in the same memory page, the
processes are sharing the page.

CSE 486/586 15

Granularity Problem

* True sharing
— Two processes share the exact same data.
« False sharing

— Two processes do not share the exact same data, but they
access different data from the same page.

« False sharing problems
— Write-invalidate: unnecessary invalidations

— Write-update: unnecessary data transfers
CSE 486/586 16

Granularity Problem

« Bigger page sizes
— Better handling for updates of large amounts of data (good)

— Less management overhead due to a smaller number of
units/pages to handle (good)

— More possibility for false sharing (bad)
« Smaller page sizes
— The opposite of the above

— If there is an update of a large amount of data, it'll be broken
down to many small updates, which leads to more network
overhead (bad)

— A smaller page size means more pages, which leads to
more management overhead, i.e., more tracking of reads
and writes (bad)

— Less possibility of false sharing (good)

CSE 486/586 17

Thrashing

 Thrashing could happen with write-invalidate
protocols.

* Thrashing is said to occur when DSM spends an
inordinate amount of time invalidating and
transferring shared data compared with the time
spent by application processes doing useful work.

« This occurs when several processes compete for a
data item or for falsely shared data items.

CSE 486/586 18

Thrashing

« Common scenario: producer-consumer pattern

— Data is produced by a process and used by another
process.

— The producer will keep invalidating the consumer & the
consumer will keep transferring data from the producer.

— Write-update is better for this pattern.
« Solutions to thrashing
— Manual avoidance: a programmer avoids thrashing patterns.

— Timeslicing: once a process gains a write access to a page,
it retains it for a period of time. Other processes’ read/write
requests are buffered during that period.

CSE 486/586 19

DSM for Threads

» Memory sharing among threads on different
machines.

» Use case: code (thread) offloading from a
smartphone to a server
— Low-power smartphones augmented by high-power servers
(computation & energy)

— It's done already (cloud backend), but DSM allows it without

any progrgmmer effort. Server

App Helper Process

CSE 486/586 20

Example: Comet*

» Comet allows thread offloading for Android apps in
Java

» Comet synchronizes the entire Java VM state.

Mobile app
(unmodified &
multi-threaded)

Offloaded
threads

In-sync
Memory states Memory states
Distributed memory Via network Distributed memory
synchronization synchronization

Phone OS Server OS

*https://www.usenix.org/conference/osdi12/technical- ions/pr ntation/gordon
CSE 486/586 21

Java Code Execution Background

* Memory: program code, stack, heap, & CPU state
« Stack & heap

— Generally, the program stack handles statically allocated
objects & method call return addresses.

— The heap is used for dynamically allocated objects.
public class Ex {
public void method() {
inti=0;// stack
) HashMap hm = new HashMap(); // heap
}
» CPU state
— Android Java VM uses registers for instruction execution.

— The program counter (PC) points to the next instruction to
execute.

» For program execution, Java VM has an execution loop.
— Fetches the next instruction that the PC points to.
— Executes the new instruction
— While executing, it uses registers, the stack, and the heap.
CSE 486/586

Comet Thread Migration

« Comet completely synchronizes VMs on both sides
(phone & server).

— In Java, everything you need for program execution is stored
in memory.

— Program code, stack, heap, & CPU state
— DSM can synchronize these.
« Any side can execute a thread, since they both know
everything necessary for program execution.

— The PC is synchronized, so both sides know the next
instruction to execute.

— The registers are synchronized, so they both know the CPU
state.

— The stack & the heap are synchronized, so they know the
memory state.

CSE 486/586 23

Summary

* Memory sharing among threads
— By default, they share the same address space
» Memory sharing among processes
— Shared memory API & semaphore API
— Virtual-physical memory mapping implements this.
» Memory sharing across machines
— Write-update
— Write-invalidate
» Memory sharing across threads on different
machines
— Use case: code offloading

CSE 486/586 24

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586

