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Overview
• Today: distributed shared memory, starting from 

some background on memory sharing
• Memory sharing for a single machine

– Threads and processes

• Memory sharing for different machines
– Threads and processes
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Why Shared Memory?
• For sharing data
• There are two strategies for data sharing.

– Message passing

– Shared memory

• Message passing
– Send/receive primitives

– Explicit sharing à no synchronization (locks) necessary

• Shared memory
– Memory read/write primitives (in your code, you could use 

regular variables)

– Typically requires explicit synchronization (locks)

• Which is better?
– Depends on your use case.

– Multiple writers: perhaps message passing

– (Mostly) read-only data: shared memory
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Memory Sharing for Threads
• Threads belong to a single process, so all threads 

share the same memory address space.
• E.g., Java threads

class MyThread extends Thread {
HashMap hm;
MyThread(HashMap _hm ) {

this.hm = _hm;
}
public void run() {

…
hm.put(key, value);

}
}

HashMap hashMap = new HashMap();
MyThread mt0 = new MyThread(hashMap); // hashMap is shared
MyThread mt1 = new MyThread(hashMap);
mt0.start();
mt1.start(); 4
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Memory: Threads vs. Processes
• For threads, there’s no special mechanism 

necessary to share memory.
– Note: Languages like Java provide constructs to create 

thread-specific variables because by default memory is 
shared across different threads.

– ThreadLocal for Java: if a shared object has a ThreadLocal
variable, it will be specific to each thread.

• But, a process has its own address space, so by 
default, different processes do not share memory.

• Processes (on the same machine) can share 
memory regions with support from their OS.
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Shared Memory on a Single Machine
• Shared memory is part of IPC (Inter-Process 

Communication).
– What are other IPC mechanisms?
– Files, (domain) sockets, pipes, etc.

• Shared memory API (POSIX C)
– shm_open(): create and open a new object, or open an 

existing object. The call returns a file descriptor.
– mmap(): map the shared memory object into the virtual 

address space of the calling process.
– …and others

• Semaphore API (POSIX C)
– sem_open(): initialize and open a named semaphore
– sem_wait(): lock a semaphore
– sem_post(): unlock a semaphore
– …and others 6
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Shared Memory Example* (in C)
int main() {

const char *name = “shared”; // shared with other processes

int shm_fd;

void *ptr;

/* create the shared memory segment. name is shared. */

shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

…

/* now map the shared memory segment in the address space of

the process */

ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,

MAP_SHARED, shm_fd, 0);

sprintf(ptr,"%s",message0);

return 0;

}
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Shared Memory Implementation

• VPFN: Virtual page frame number

• PFN: Physical page frame number
• Adapted from http://tldp.org/LDP/tlk/mm/memory.html
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Shared Memory Use Case: Android
• All apps need framework API libraries, Java VM, etc.

– Too expensive if all app processes have them in their 
memory space individually.

• Zygote: A process that starts everything else.
– All app processes share memory with Zygote.

9

Image source: https://www.slideshare.net/tetsu.koba/android-is-not-just-java-on-linux/19-Zygote_forkZygote_process_Child_process
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CSE 486/586 Administrivia
• PA3 grades will be posted today.
• PA4 deadline: 5/10

– Please start early. The grader takes a long, long time.

• Survey & course evaluation
– Survey: https://forms.gle/eg1wHN2G8S6GVz3e9

– Course evaluation: 
https://www.smartevals.com/login.aspx?s=buffalo

• If both have 80% or more participation,
– For each of you, I’ll take the better one between the midterm 

and the final, and give the 30% weight for the better one and 
the 20% weight for the other one.

– (Currently, it’s 20% for the midterm and 30% for the final.)

• No recitation today; replaced with office hours
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Distributed Shared Memory
• We will discuss two cases.

– DSM for processes

– DSM for threads

• DSM for processes: different processes running on 
different machines sharing a memory page.

• The shared memory page is replicated and 

synchronized across different machines.

– However, replication is not the goal (e.g., we’re not keeping 

replicas to deal with failures).

• A generic way of doing this is at the OS layer.

– Similar to the diagram on slide #8, but with processes on 

different machines
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DSM Synchronization Options
• Write-update

– A process updates a memory page.
– The update is multicast to other replicas.
– The multicast protocol determines consistency guarantees 

(e.g., FIFO-total for sequential consistency).
– Reads are cheap (always local), but writes are costly (always 

multicast).
• Write-invalidate

– Two states for a shared page: read-only or read & write
» Read-only: the memory page is potentially replicated on two or 

more processes/machines
» Read & write: the memory page is exclusive for the process (no 

other replica)

– If a process intends to write to a read-only page, an invalidate 
request is multicast to other processes.

– Later writes can take place without communication (cheap).
– Writes are only propagated when there’s a read by another 

process (cheap for write, costly for read).
– But a write can be delayed by invalidation (costly for write). 12

https://forms.gle/eg1wHN2G8S6GVz3e9
https://www.smartevals.com/login.aspx?s=buffalo
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Write Invalidate Protocol Example
• Note: R fault and W fault can occur at any process
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Example System: Ivy
• Implements a write-invalidation protocol

– Owner of a page: the process with the most up-to-date
– Copyset of a page: the processes with a replica
– A centralized manager maintains ownership info.
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Granularity Problem
• Let’s assume that we operate at the page-level.

– (But other implementations also have similar problems.)
– Just as a reference, a Linux memory page is 4KB.

• Problem
– When two processes (on two different machines) share a 

page, it doesn’t always mean that they share everything on 
the page.

– E.g., one process reads from and writes to a variable X, 
while the other process reads from and writes to another 
variable Y. If they are in the same memory page, the 
processes are sharing the page.
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Granularity Problem
• True sharing

– Two processes share the exact same data.

• False sharing
– Two processes do not share the exact same data, but they 

access different data from the same page.

• False sharing problems
– Write-invalidate: unnecessary invalidations

– Write-update: unnecessary data transfers
16
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Granularity Problem
• Bigger page sizes

– Better handling for updates of large amounts of data (good)
– Less management overhead due to a smaller number of 

units/pages to handle (good)
– More possibility for false sharing (bad)

• Smaller page sizes
– The opposite of the above
– If there is an update of a large amount of data, it’ll be broken 

down to many small updates, which leads to more network 
overhead (bad)

– A smaller page size means more pages, which leads to 
more management overhead, i.e., more tracking of reads 
and writes (bad)

– Less possibility of false sharing (good)
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Thrashing
• Thrashing could happen with write-invalidate 

protocols.
• Thrashing is said to occur when DSM spends an 

inordinate amount of time invalidating and 
transferring shared data compared with the time 
spent by application processes doing useful work.

• This occurs when several processes compete for a 
data item or for falsely shared data items.
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Thrashing
• Common scenario: producer-consumer pattern

– Data is produced by a process and used by another 
process.

– The producer will keep invalidating the consumer & the 
consumer will keep transferring data from the producer.

– Write-update is better for this pattern.

• Solutions to thrashing
– Manual avoidance: a programmer avoids thrashing patterns.
– Timeslicing: once a process gains a write access to a page, 

it retains it for a period of time. Other processes’ read/write 
requests are buffered during that period.
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DSM for Threads
• Memory sharing among threads on different 

machines.
• Use case: code (thread) offloading from a 

smartphone to a server
– Low-power smartphones augmented by high-power servers 

(computation & energy)
– It’s done already (cloud backend), but DSM allows it without 

any programmer effort.
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Example: Comet*
• Comet allows thread offloading for Android apps in 

Java
• Comet synchronizes the entire Java VM state.
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*https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gordon
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Java Code Execution Background
• Memory: program code, stack, heap, & CPU state
• Stack & heap

– Generally, the program stack handles statically allocated 
objects & method call return addresses.

– The heap is used for dynamically allocated objects.

public class Ex {
public void method() {

int i = 0; // stack
HashMap hm = new HashMap(); // heap

}
}

• CPU state
– Android Java VM uses registers for instruction execution.
– The program counter (PC) points to the next instruction to 

execute.
• For program execution, Java VM has an execution loop.

– Fetches the next instruction that the PC points to.
– Executes the new instruction
– While executing, it uses registers, the stack, and the heap.
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Comet Thread Migration
• Comet completely synchronizes VMs on both sides 

(phone & server).
– In Java, everything you need for program execution is stored 

in memory.
– Program code, stack, heap, & CPU state

– DSM can synchronize these.

• Any side can execute a thread, since they both know 
everything necessary for program execution.

– The PC is synchronized, so both sides know the next 
instruction to execute.

– The registers are synchronized, so they both know the CPU 
state.

– The stack & the heap are synchronized, so they know the 
memory state.
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Summary
• Memory sharing among threads

– By default, they share the same address space

• Memory sharing among processes
– Shared memory API & semaphore API
– Virtual-physical memory mapping implements this.

• Memory sharing across machines
– Write-update
– Write-invalidate

• Memory sharing across threads on different 
machines

– Use case: code offloading
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