
CSE 486/586 Distributed Systems
Midterm Solutions

Monday, 3/5/12

DIRECTIONS

• Time limit: 45 minutes (3:05pm - 3:50pm)

• There are 50 points and 5 bonus points (whatever you score more than 50 will be your bonus points).

• This is a closed-book, no calculator, closed-notes exam.

• The only exception is your cheat sheet (one-sided, letter-sized).

• You should turn in your cheat sheet as well as your answer sheets at the end of the exam.

• Each problem starts on a new page.

• Please use a pen, not a pencil. If you use a pencil, it won’t be considered for regrading.

• Each problem also explains its grading criteria. “Atomic” means that you get either all the points or
no point, i.e., there are no partial points.

Name:

UBITName:

Problem # Score
1
2
3
4
5
6

1

1. (a) Explain what fate-sharing is and how it was applied to the design of the Internet.
(Grading: atomic 3 points)
Answer:
The principle of fate-sharing is that it is acceptable to lose the state information associated with
an entiry if, at the same time, the entity itself is lost. Following this principle in the design of the
Internet resulted in a best-effort network.

(b) Explain what the end-to-end argument is. Describe this in one sentence and don’t forget to
include what the exception is.
(Grading: atomic 3 points)
Answer:
The principle of the end-to-end argument is, if a functionality must be implemented end-to-end,
then do not implement it in the network, except when there are clear performance improvements.

(c) Under what conditions can we design a reliable, totally-ordered multicast algorithm?
(Grading: atomic 3 points)
Answer:
Designing a reliable, totally-ordered multicast is essentially a consensus problem. Due to the
impossbility of consensus result, it is impossible to design this in an asynchronous system. If
we relax the assumptions of asynchronous systems, i.e., if there’s a known delay bound or if we
can say that there is no failure, then it becomes possible to design such an algorithm.

2

2. In Lamport clocks, it is not guaranteed that if L(e) < L(e′) then e → e′, where → indicates the
“happened-before” relation between two events and L(e) denotes the timestamp of event e at what-
ever process it occurred at. Give an example that demonstrates, even if L(e)< L(e′), it is not true that
e→ e′, using 3 processes below. Clearly mark which 2 events demonstrate it.
(Grading: atomic 4 points)

Answer:
Multiple solutions are possible. One example is given below, where P2’s event and P3’s event demon-
strate it.

P1

P2

P3

1 2

3

1

3

3. Below is a Chord ring with the id space of 28. There are 5 nodes in the system. What is the finger
table at node 200 (N200)? You can use the table provided below.
(Grading: 5 points)

N232

N200

N130

N64

N45

Answer:

i Finger
0 232
1 232
2 232
3 232
4 232
5 232
6 45
7 130

4

4. Using the vector logical clock discussed in class, list all possible pairs of concurrent events that appear
in the timeline below. You can use || to denote a pair of concurrent events, e.g., a || b means a and b
are concurrent.
(Grading: 12 points)

P1

P2

P3

a b c

d

e f

g h

Answer:
a || d
a || e
a || g
b || d
b || e
b || g
b || h
c || f
c || h
d || h
e || h
f || h

5

5. Using the multicast algorithm that provides causal ordering discussed in class, mark the timestamps
at the point of each multicast send and each multicast receipt. Also mark multicast receipts that are
buffered, along with the points at which they are delivered to the application.
(Grading: 10 points)

P1

P2

P3

Answer:
P1:
Accept, (0,0,1)
Send, (1,0,1)
Accept, (1,1,1)
Send, (2,1,1)
Accept, (2,2,1)

P2:
Send, (0,1,0)
Accept, (0,1,1)
Send, (0,2,1)
Buffered as (2,1,1), Timestamp still (0,2,1)
Accept (1,2,1)
Accept (2,2,1) (previously buffered)

P3:
Send, (0,0,1)
Buffered as (0,2,1), Timestamp still (0,0,1)
Accept (1,0,1)
Buffered as (2,1,1), Timestamp still (1,0,1)
Accept (1,1,1)
Accept (2,1,1) (previously buffered)
Accept (2,2,1) (previously buffered)

6

Steve Ko
(1,2,1)

6. Tired of trying to understand distributed mutex algorithms developed by others, your instructor of
CSE 490/590 has decided to write his own algorithm. His algorithm assumes that 1) network channels
are reliable and preserve FIFO order; 2) there is no process failure. The following is the algorithm
description, assuming that it runs at process pi. The algorithm uses a local lock which is just meant to
be used inside each process; it has nothing to do with distributed mutual exclusion.

#1: On initialization
state := RELEASED;
local lock := UNLOCKED; // Per-process lock
cnt := 0;
For each process p j(j 6= i) in the group,

rcv j := 0;

#2: To enter the critical section
lock(local lock);
state := WANTED;
cnt++;
For each process p j(j 6= i) in the group,

Send a request to p j with rcv j attached to it;
unlock(local lock);
Wait until (number of replies received = (N−1));
state := HELD;

#3: On receipt of a request from p j at pi (i 6= j)
lock(local lock);
tmp rcv := rcvi value attached in the request from p j
if (state = HELD)

Queue the request from p j without replying;
else if (state = WANTED and tmp rcv < cnt)

Queue the request from p j without replying;
else

Reply immediately to p j;
rcv j++;

unlock(local lock);

#4: To exit the critical section
lock(local lock);
state := RELEASED;
For each queued request,

// Say the request is from p j

Send a reply to p j;
rcv j++;

unlock(local lock);

(Continue on the next page)

7

(a) Does this algorithm guarantee liveness? If the answer is yes, prove it. If the answer is no, give a
clear example that does not satisfy liveness.
(Grading: 5 points)
Answer:
The answer is no. One example is two processes trying to enter the critical section at the same
time, both for the first time, i.e., all counters are 0 at both processes. According to the protocol,
they will each increment its cnt by one, set their state to WANTED, send a request to each other.
Then they will both execute “else if” in #3, which will buffer the other process’s request and
never reply. This gives a deadlock.

(b) Does this algorithm guarantee safety? If the answer is yes, prove it. If the answer is no, give a
clear example that does not satisfy safety.
(Grading: 10 points)
Answer:
The answer is yes. The intuition is that if a process is executing “else if” in #3, the system will
always deadlock, meaning that there is no process that can enter the critical section. In other
cases (HELD or RELEASED), only one process can enter the critical section. This guarantees
safety as at most one process can enter the critical section. More formally, we can prove it by
contradiction.
Suppose that there are two processes, p0 and p1 in the critical section (violating the safety
guarantee). Let’s say p0 entered the critical section as a result of sending req0, and p1 entered
the critical section as a result of sending req1.
Now let’s backtrack and consider the time p0 received req1 from p1. p0 could have been in one
of three states (HELD, RELEASED, and WANTED) for req0. Thus,
case 1: p0 is in HELD. In this case, p1 cannot go into the critical section until p0 exits. This
contradicts our assumption.
case 2: p0 is in RELEASED. In this case, p0 is not in the critical section, which contradicts our
assumption.
case 3: p0 is in WANTED. If (rcv j < cnt) is true, then p0 will not reply and p1 cannot go into
the critical section, which contradicts our assumption. If (rcv j < cnt) is not true, the only case
is (rcv j == cnt), which means that p1 should have received p0’s req0 and have replied to p0
already (because network channels are reliable and FIFO). This means that p0 should have been
in HELD, not WANTED. This contradicts our assumption.

8

