
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Failure Detectors

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
• Best Practices

2

CSE 486/586

Today’s Question
• How do we handle failures?

– Cannot answer this fully (yet!)

• You’ll learn new terminologies, definitions, etc.
• Let’s start with some new definitions.
• One of the fundamental challenges in distributed 

systems
– Failure
– Ordering (with concurrency)
– Etc…

3 CSE 486/586

Two Different System Models
• Synchronous Distributed System

• Each message is received within bounded time
• Each step in a process takes lb < time < ub
• (Each local clock’s drift has a known bound)
• Examples: Multiprocessor systems

• Asynchronous Distributed System
• No bounds on message transmission delays
• No bounds on process execution
• (The drift of a clock is arbitrary)

• Examples: Internet, wireless networks, datacenters, most 
real systems

• These are used to reason about how protocols would 
behave, e.g., in formal proofs.

4

CSE 486/586

Failure Model
• What is a failure?
• We’ll consider: process omission failure

• A process disappears.
• Permanently: crash-stop (fail-stop) – a process halts and 

does not execute any further operations

• Temporarily: crash-recovery – a process halts, but then 
recovers (reboots) after a while

• We will focus on crash-stop failures 
• Meaning, we assume there’s no other failure (e.g., network 

error). More failure types at the end of this lecture.

• They are easy to detect in synchronous systems
• Not so easy in asynchronous systems

5 CSE 486/586

Why, What, and How
• Why design a failure detector?

– First step to failure handling

• What do we want from a failure detector?
– No miss (completeness)
– No mistake (accuracy)

• How do we design one?

6



C 2

CSE 486/586

What is a Failure Detector?

pi pj

7 CSE 486/586

What is a Failure Detector?

pi pj

Crash-stop failure

(pj is a failed process)

8

CSE 486/586

What is a Failure Detector?

pi

needs to know about pj’s failure

(pi is a non-faulty process 

or alive process)
Crash-stop failure

(pj is a failed process)

pj

There are two styles of failure detectors

9 CSE 486/586

• pi queries pj once every T 
time units

• If pj does not respond 
within another T time units 
of being sent the ping, pi

detects/declares pj as failed

I. Ping-Ack Protocol

pi pj

• pj replies

ping

ack

If pj fails, then within T time units, pi will send

it a ping message. pi will time out within 

another T time units. 

Worst case Detection time = 2T

The waiting time ‘T’ can be parameterized.

10

CSE 486/586

II. Heartbeating Protocol

pi pj

• pj maintains a sequence 
number

• pj sends pi a heartbeat with 
incremented seq. number 
after every T time units

• If pi has not received a new 
heartbeat for the past, say 3T 
time units, since it received 
the last heartbeat, then pi

detects pj as failed

heartbeat

If T ≫ round trip time of messages, then worst case detection time ~ 3T (why?)

The ‘3’ can be changed to any positive number since it is a parameter

11 CSE 486/586

In a Synchronous System
• The Ping-Ack and Heartbeat failure detectors are 

always correct. For example (there could be other 
ways),

– Ping-Ack: set waiting time ‘T’ to be > round-trip time upper 
bound

– Heartbeat: set waiting time ‘3*T’ to be > round-trip time 
upper bound

• The following property is guaranteed:
– If a process pj fails, then pi will detect its failure as long as pi 

itself is alive
– Its next ack/heartbeat will not be received (within the 

timeout), and thus pi will detect pj as having failed

12



C 3

CSE 486/586

Failure Detector Properties
• What do you mean a failure detector is “correct”?
• Completeness = every process failure is eventually 

detected (no misses)
• Accuracy = every detected failure corresponds to a 

crashed process (no mistakes)
• Completeness and Accuracy 

– Can both be guaranteed 100% in a synchronous distributed 
system (with reliable message delivery in bounded time)

– Can never be guaranteed simultaneously in an 
asynchronous distributed system

– Why?

13 CSE 486/586

Completeness and Accuracy in 
Asynchronous Systems
• Impossible because of arbitrary message delays

– If a heartbeat/ack is dropped (or several are dropped) from 
pj, then pj will be mistakenly detected as failed => inaccurate 
detection

– How large would the T waiting period in ping-ack or 3*T 
waiting period  in heartbeating, need to be to obtain 100% 
accuracy?

– In asynchronous systems, delays on a network link are 
impossible to distinguish from a faulty process

• Heartbeating – satisfies completeness but not 
accuracy (why?)

• Ping-Ack – satisfies completeness but not accuracy 
(why?)

• Point: You can’t design a perfect failure detector!
– You need to think about what metrics are important.

14

CSE 486/586

Completeness or Accuracy? 
(in Asynchronous System)
• Most failure detector implementations are willing to 

tolerate some inaccuracy, but require 100% 
completeness.

• Plenty of distributed apps designed assuming 100% 
completeness, e.g., p2p systems

– “Err on the side of caution”. 

– Processes not “stuck” waiting for other processes

• But it’s ok to mistakenly detect once in a while since 
– (the victim process need only rejoin as a new process-—more 
later)

• Both Hearbeating and Ping-Ack provide
– Probabilistic accuracy (for a process detected as failed, with 

some probability close to 1.0 (but not equal), it is true that it 
has actually crashed).

15 CSE 486/586

Failure Detection in a Distributed 
System
• That was for one process pj being detected and one 

process pi detecting failures
• Let’s extend it to an entire distributed system
• Difference from original failure detection is

– We want failure detection of not merely one process (pj), but 
all processes in system

16

CSE 486/586

CSE 486/586 Administrivia
• Will start grading PA1 soon.
• PA2A due in roughly two weeks (Fri, 2/21)
• Please use Piazza; all announcements will go there.

17 CSE 486/586

Failure Detection in a Distributed 
System
• That was for one process pj being detected and one 

process pi detecting failures
• Let’s extend it to an entire distributed system
• Difference from original failure detection is

– We want failure detection of not merely one process (pj), but 
all processes in system

• Any idea?
– Why
– What
– How

18



C 4

CSE 486/586

Efficiency of Failure Detector: Metrics

• Bandwidth: the number of messages sent in the 

system during steady state (no failures)

– Small is good

• Detection Time

– Time between a process crash and its detection

– Small is good

• Scalability: Given the bandwidth and the detection 

properties, can you scale to a 1000 or million nodes?

– Large is good

• Accuracy

– Large is good (lower inaccuracy is good)

19 CSE 486/586

Accuracy Metrics
• False Detection Rate: Average number of failures 

detected per second, when there are in fact no 
failures

• Fraction of failure detections that are false

• Tradeoffs: If you increase the T waiting period in 
ping-ack or 3*T waiting period in heartbeating what 
happens to:

– Detection Time?

– False positive rate?

– Where would you set these waiting periods?

20

CSE 486/586

Centralized Heartbeat

21

…

pj, Heartbeat Seq. l++ 

pj

pi

Downside?
CSE 486/586

Ring Heartbeat

22

pj, Heartbeat Seq. l++
pj

……

pi

Downside?

CSE 486/586

All-to-All Heartbeat

23

pj, Heartbeat Seq. l++

…

pj

pi

Advantage: Everyone is able to keep track of everyone

Downside? CSE 486/586

Other Types of Failures
• Let’s discuss the other types of failures
• Failure detectors exist for them too (but we won’t 

discuss those)

24



C 5

CSE 486/586

Processes and Channels

25

process p process q

Co mm un icat ion chann el

sen d

Ou tgo ing  messa ge  bu ffe r Incoming  messa ge  bu ffe r

receivem

Outgoing message buffer Incoming message buffer
Communication channel

Process p Process q

receivesend m

CSE 486/586

Other Failure Types
• Communication omission failures

– Send-omission: loss of messages between the sending 
process and the outgoing message buffer (both inclusive)

» What might cause this?
– Channel omission: loss of message in the communication 

channel
» What might cause this?

– Receive-omission: loss of messages between the incoming 
message buffer and the receiving process (both inclusive)

» What might cause this?

26

CSE 486/586

Other Failure Types
• Arbitrary failures

– Arbitrary process failure: arbitrarily omits intended 
processing steps or takes unintended processing steps.

– Arbitrary channel failures: messages may be corrupted, 
duplicated, delivered out of order, incur extremely large 
delays; or non-existent messages may be delivered.

• Above two are Byzantine failures, e.g., due to 
hackers, man-in-the-middle attacks, viruses, worms, 
etc.

• A variety of Byzantine fault-tolerant protocols have 
been designed in literature!

27 CSE 486/586

Omission and Arbitrary Failures

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send,but the message is not put
in its outgoing message buffer.

Receive-omissionProcess A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

28

CSE 486/586

Summary
• Failure detectors are required in distributed systems 

to keep system running in spite of process crashes
• Properties – completeness & accuracy, together 

unachievable in asynchronous systems but 
achievable in synchronous systems

– Most apps require 100% completeness, but can tolerate 
inaccuracy

• 2 failure detector algorithms - heartbeating and ping
• Distributed FD through heartbeating: centralized, 

ring, all-to-all
• Metrics: bandwidth, detection time, scale, accuracy
• Other types of failures
• Next: the notion of time in distributed systems

29 CSE 486/586 30

Acknowledgements
• These slides contain material developed and 

copyrighted by Indranil Gupta at UIUC.


