CSE 486/586 Distributed Systems
Time and Synchronization

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

» Models of Distributed Systems
— Synchronous systems
— Asynchronous systems
« Failure detectors---why?
— Because things do fail.
« Failure detectors---what?
— Properties: completeness & accuracy
— Cannot have a perfect failure detector
— Metrics: bandwidth, detection time, scale, accuracy
« Failure detectors---how?
— Two processes: Heartbeating and Ping

— Multiple processes: Centralized, ring, all-to-all

CSE 486/586

Today’s Question

 The topic of time
— Today and next time
« Why?
— Need to know when things happen
— One of the fundamental challenges
¢ What?

— Ideally, we'd like to know when exactly something
happened.

¢ How?

— Let's see!

CSE 486/586 3

Today’s Question

« Servers in the cloud need to timestamp events
 Server A and server B in the cloud can have different
clock values.
— The cloud has server A and server B that service customers.
— You try to purchase an airline ticket online via the cloud.
— It's the last airline ticket available on that flight.
— Server A timestamps your attempt at 9h:15m:32.45s.

— Server B timestamps someone else’s attempt at
9h:20m:22.76s.

— Who should get the ticket?

— What if Server A’s clock was > 10 minutes ahead of server
B’s clock? Behind?

— How would you know what the difference was at those
times?

CSE 486/586

Physical Clocks & Synchronization

* Some definitions: Clock Skew versus Dirift

« Clock Skew = Relative Difference in clock values of two
processes

« Clock Drift = Relative Difference in clock frequencies (rates)
of two processes

A non-zero clock drift will cause skew to continuously
increase.

» Real-life examples

— Ever had “make: warning: Clock skew detected. Your build
may be incomplete.”?

— It's reported that in the worst case, there’s 1 sec/day drift in
modern HW.

— Almost all physical clocks experience this.
CSE 486/586 5

Synchronizing Physical Clocks

« Ci(t): the reading of the software clock at process i when the real
time is t.

External synchronization: For a synchronization bound D>0,
and for source S of UTC time,

S()-C.(0] <D,

for i=1,2,...,N and for all real times t.

Clocks C; are accurate to within the bound D.

Internal synchronization: For a synchronization bound D>0,
lc.()-c;(0)|<D

for i, j=1,2,...,N and for all real times t.

Clocks C; agree within the bound D.

External synchronization with D = Internal synchronization with
2D

Internal synchronization with D = External synchronization with
??

CSE 486/586

Clock Synchronization Using a Time
Server

Ch i@

P Time server,S

:I—(E

S em

« Client: “What time is it?”
g Server: “It's t.”
"« Any difficulty?

CSE 486/586

Cristian’s Algorithm

» Uses a time server to synchronize clocks
» Mainly designed for LAN
« Time server keeps the reference time (say UTC)

« Aclient asks the time server for time, the server
responds with its current time T, and the client uses
the received value T to set its clock

« But network round-trip time introduces an error.

[/}

So what do we need to do?

— Estimate one-way delay (server to client latency)

CSE 486/586 8

Cristian’s Algorithm

 Let RTT = response-received-time — request-sent-
time (measurable at client)

.

Assume that the server timestamped the message at
the last possible instant before sending it back

.

Ideally, the client should set its time to: T + (one-way
latency from the server to the client)

— But we don’t know the one-way latency from the server to
the client.

The algorithm
— A client asks its time server.
— The time server sends its time T.

.

— The client estimates the one-way delay as RTT/2
— The client sets its time: T + RTT/2

CSE 486/586 9

Cristian’s Algorithm Analysis

» When a client sets a new time, what's the accuracy?
* When the client receives the time (T) from the server,
T can be in a range of possible values.
» The algorithm
— A client asks its time server.
— The time server sends its time T.
— The client estimates the one-way delay as RTT/2
— The client sets its time: T + RTT/2
* Consider two extreme cases.

— Assume that we know the minimum time from server to
client or vice versa (calculated based on distance & the
speed of transfer for the medium we use)

CSE 486/586 10

Cristian’s Algorithm

» Case 1 (the actual time should be: T + min)

Server sends

response. T
min v
f RTT f)
Request sent Response received

» Case 2 (the actual time should be: T + RTT — min)

Server sends

T / response.
v min
t o [y

Request sent Response received

CSE 486/586 11

Cristian’s Algorithm

« Server time T could be in the following range.

T
v min ‘ A ? min v
T RTT T)
Request sent Response received

» When the client receives the time (T) from the server,
the actual time that the client should set could be
between [T + min, T + RTT - min]

CSE 486/586 12

Cristian’s Algorithm

 (From the previous slide), the accuracy is: +-(RTT/2
—min)
» Want to improve accuracy?

— Take multiple readings and use the minimum RTT - tighter
bound

— For unusually long RTTs, ignore them and repeat the
request > removing outliers

CSE 486/586 13

CSE 486/586 Administrivia

* Please start PA2-A.

» Grades will go to UBlearns. Will post grades for PA1
(hopefully) by the end of this week.

* Please use Piazza; all announcements will go there.

CSE 486/586 14

The Network Time Protocol (NTP)

» Uses a network of time servers to synchronize all
processes on a network.

« Designed for the Internet

¥ Why not Christian’s algo.?

« Time servers are connected by a synchronization
subnet tree. The root is in touch with UTC. Each
node synchronizes its children nodes.

. Why? ©

‘ ~
oM O
primary server. synced by the
Céta ‘ l l secondary

CSE 486/586

Messages Exchanged Between a
Pair of NTP Peers (“Connected
Servers”)

Server B
\ / \ / * Time
Server A Ti-3

» Each message bears tlmestamps of recent message
events: the local time when the previous NTP
message was sent and received, and the local time
when the current message was transmitted.

CSE 486/586 16

The Protocol

[\ T

Time

Server

Client
« Compute round-trlp delay: (T - Ti_3) —(Ti1 = Ti2)

 Take the half of the round-trip delay as the one-way
estimate: ((T| - Ti.3) - (Ti.1 - Ti.z))/z

CSE 486/586 17

The Protocol

Server

[\ T

Time
Client

Compute offset (|.e., time dn‘ference): T4 + (one-way
estimate) - T = ((Ti.o — Ti.a) + (Tiq — T1))/2

Get this offset with not just one server, but multiple
servers.

» Do some statistical analysis, remove outliers, and
apply a data filtering aCIgEoIétsr/\SrpG (simplest: average)

Theoretical Base for NTP

B 12 Tl Time
m m'
Aith delay t)\‘with delay I/
Ti-3 Ti

Time
Server A

« 0;: estimate of the actual offset between the two
clocks

« d;: estimate of the bounds of o; ; total transmission
times for m and m’; di=t+t’

CSE 486/586 19

Theoretical Base for NTP

B T2 T .
Time
m m'
(with delay t) \(with delay ¢’
Ti-3 Ti

Time
Server A

First, let's get o :
Tia=Tis+t+o0
Ti=Ti+t'—0
=0=(Tia=Ti3+ Tia=TD/12+ (' =)/2| | Then we get :
Then, get the bound for (#'-£)/2:
—t'-t<t'-t <t'+t (since t',t 20)

Finally, we set :

0i=(Ti2=Ti3s+Tiu =T /2
di=t+t'=Ti,—-Ti3+Ti—-Ti,

oi—dil2<0=<o0;+d;/2.

CSE 486/586

20

Then a Breakthrough...

.

We cannot sync multiple clocks perfectly.

Thus, if we want to order events happened at
different processes (remember the ticket reservation
example?), we cannot rely on physical clocks.
Then came logical time.

— First proposed by Leslie Lamport in the 70’s

— Based on causality of events

.

.

— Defined relative time, not absolute time

Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive
messages.

CSE 486/586 21

Events Occurring at Three

Summary

 Time synchronization important for distributed
systems

— Cristian’s algorithm
- NTP

« Relative order of events enough for practical
purposes

— Lamport’s logical clocks
» Next: continue on logical clocks

CSE 486/586 23

Processes
Py
a b\
Py X Physical
c d m, time
P3
e f
CSE 486/586 22
Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

CSE 486/586

