
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Time and Synchronization

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
• Models of Distributed Systems

– Synchronous systems

– Asynchronous systems

• Failure detectors---why?
– Because things do fail.

• Failure detectors---what?
– Properties: completeness & accuracy

– Cannot have a perfect failure detector

– Metrics: bandwidth, detection time, scale, accuracy

• Failure detectors---how?
– Two processes: Heartbeating and Ping

– Multiple processes: Centralized, ring, all-to-all

2

CSE 486/586

Today’s Question
• The topic of time

– Today and next time

• Why?

– Need to know when things happen

– One of the fundamental challenges

• What?

– Ideally, we’d like to know when exactly something

happened.

• How?

– Let’s see!

3 CSE 486/586

Today’s Question
• Servers in the cloud need to timestamp events
• Server A and server B in the cloud can have different

clock values.
– The cloud has server A and server B that service customers.
– You try to purchase an airline ticket online via the cloud.
– It’s the last airline ticket available on that flight.
– Server A timestamps your attempt at 9h:15m:32.45s.
– Server B timestamps someone else’s attempt at

9h:20m:22.76s.
– Who should get the ticket?
– What if Server A’s clock was > 10 minutes ahead of server

B’s clock? Behind?
– How would you know what the difference was at those

times?

4

CSE 486/586

Physical Clocks & Synchronization
• Some definitions: Clock Skew versus Drift

• Clock Skew = Relative Difference in clock values of two

processes

• Clock Drift = Relative Difference in clock frequencies (rates)
of two processes

• A non-zero clock drift will cause skew to continuously
increase.

• Real-life examples

– Ever had “make: warning: Clock skew detected. Your build

may be incomplete.”?

– It’s reported that in the worst case, there’s 1 sec/day drift in

modern HW.

– Almost all physical clocks experience this.

5 CSE 486/586

Synchronizing Physical Clocks
• Ci(t): the reading of the software clock at process i when the real

time is t.

• External synchronization: For a synchronization bound D>0,
and for source S of UTC time,

for i=1,2,...,N and for all real times t.
Clocks Ci are accurate to within the bound D.

• Internal synchronization: For a synchronization bound D>0,

for i, j=1,2,...,N and for all real times t.
Clocks Ci agree within the bound D.

• External synchronization with D Þ Internal synchronization with
2D

• Internal synchronization with D Þ External synchronization with
??

6

,)()(DtCtS i <-

DtCtC ji <-)()(

C 2

CSE 486/586

Clock Synchronization Using a Time
Server

• Client: “What time is it?”
• Server: “It’s t.”
• Any difficulty?

7

mr

mt
p Time server,S

CSE 486/586

Cristian’s Algorithm
• Uses a time server to synchronize clocks

• Mainly designed for LAN

• Time server keeps the reference time (say UTC)

• A client asks the time server for time, the server
responds with its current time T, and the client uses
the received value T to set its clock

• But network round-trip time introduces an error.

• So what do we need to do?

– Estimate one-way delay (server to client latency)

8

CSE 486/586

Cristian’s Algorithm
• Let RTT = response-received-time – request-sent-

time (measurable at client)
• Assume that the server timestamped the message at

the last possible instant before sending it back
• Ideally, the client should set its time to: T + (one-way

latency from the server to the client)
– But we don’t know the one-way latency from the server to

the client.

• The algorithm
– A client asks its time server.
– The time server sends its time T.

– The client estimates the one-way delay as RTT/2
– The client sets its time: T + RTT/2

9 CSE 486/586

Cristian’s Algorithm Analysis
• When a client sets a new time, what’s the accuracy?
• When the client receives the time (T) from the server,

T can be in a range of possible values.
• The algorithm

– A client asks its time server.
– The time server sends its time T.

– The client estimates the one-way delay as RTT/2
– The client sets its time: T + RTT/2

• Consider two extreme cases.
– Assume that we know the minimum time from server to

client or vice versa (calculated based on distance & the
speed of transfer for the medium we use)

10

CSE 486/586

Cristian’s Algorithm
• Case 1 (the actual time should be: T + min)

• Case 2 (the actual time should be: T + RTT – min)

11

Request sent Response received
RTT

min
T

Server sends
response.

Request sent Response received
RTT

T
min

Server sends
response.

CSE 486/586

Cristian’s Algorithm
• Server time T could be in the following range.

• When the client receives the time (T) from the server,
the actual time that the client should set could be
between [T + min, T + RTT - min]

12

Request sent Response received
RTT

min

T

min

C 3

CSE 486/586

Cristian’s Algorithm
• (From the previous slide), the accuracy is: +-(RTT/2

– min)
• Want to improve accuracy?

– Take multiple readings and use the minimum RTT à tighter
bound

– For unusually long RTTs, ignore them and repeat the
request à removing outliers

13 CSE 486/586

CSE 486/586 Administrivia
• Please start PA2-A.
• Grades will go to UBlearns. Will post grades for PA1

(hopefully) by the end of this week.
• Please use Piazza; all announcements will go there.

14

CSE 486/586

The Network Time Protocol (NTP)
• Uses a network of time servers to synchronize all

processes on a network.
• Designed for the Internet

• Why not Christian’s algo.?

• Time servers are connected by a synchronization
subnet tree. The root is in touch with UTC. Each
node synchronizes its children nodes.

• Why?

15

Secondry servers,
sync’ed by the
primary server

Primary server, direct sync.

Strata 3,
sync’ed by the
secondary
servers

1

2 2 2

3 3 3 3 3 3

CSE 486/586

Messages Exchanged Between a
Pair of NTP Peers (“Connected
Servers”)

• Each message bears timestamps of recent message
events: the local time when the previous NTP
message was sent and received, and the local time
when the current message was transmitted.

16

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

CSE 486/586

The Protocol

• Compute round-trip delay: (Ti – Ti-3) – (Ti-1 – Ti-2)
• Take the half of the round-trip delay as the one-way

estimate: ((Ti – Ti-3) – (Ti-1 – Ti-2))/2

17

Ti

Ti-1Ti-2

Ti- 3

Server

Client

Time

m m'

Time

CSE 486/586

The Protocol

• Compute offset (i.e., time difference): Ti-1 + (one-way
estimate) - Ti = ((Ti-2 – Ti-3) + (Ti-1 – Ti))/2

• Get this offset with not just one server, but multiple
servers.

• Do some statistical analysis, remove outliers, and
apply a data filtering algorithm. (simplest: average)

18

Ti

Ti-1Ti-2

Ti- 3

Server

Client

Time

m m'

Time

C 4

CSE 486/586

Theoretical Base for NTP

• oi: estimate of the actual offset between the two
clocks

• di: estimate of the bounds of oi ; total transmission
times for m and m’; di=t+t’

19

Ti

Ti-1Ti-2

Ti-3

Server B

Server A

Time

m m'

Time
(with delay t) (with delay t’)

CSE 486/586

Theoretical Base for NTP

20

Ti

Ti-1Ti-2

Ti-3

Server B

Server A

Time

m m'

Time

(with delay t) (with delay t’)

€

First, let's get o :
i−2T = i−3T + t + o

iT = i−1T + t'−o
⇒ o = (i−2T − i−3T + i−1T − iT) /2 + (t '−t) /2
Then, get the bound for (t '−t) /2 :
−t '−t ≤ t '−t ≤ t '+t (since t ',t ≥ 0)

€

Finally, we set :
io = (i−2T − i−3T + i−1T − iT) /2
id = t + t'= i−2T − i−3T + iT − i−1T

Then we get :
io − id /2 ≤ o ≤ io + id /2.

CSE 486/586

Then a Breakthrough…
• We cannot sync multiple clocks perfectly.
• Thus, if we want to order events happened at

different processes (remember the ticket reservation
example?), we cannot rely on physical clocks.

• Then came logical time.
– First proposed by Leslie Lamport in the 70’s
– Based on causality of events
– Defined relative time, not absolute time

• Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive
messages.

21 CSE 486/586

Events Occurring at Three
Processes

22

p1

p2

p3

a b

c d

e f

m1

m2

Physi cal
time

CSE 486/586

Summary
• Time synchronization important for distributed

systems
– Cristian’s algorithm
– NTP

• Relative order of events enough for practical
purposes

– Lamport’s logical clocks

• Next: continue on logical clocks

23 CSE 486/586 24

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

