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Last Time

» Clock skews do happen
« Cristian’s algorithm

— One server

— Server-side timestamp and one-way delay estimation
» NTP (Network Time Protocol)

— Hierarchy of time servers
— Estimates the actual offset between two clocks
— Designed for the Internet
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Then Came a Breakthrough...

.+ We cannot sync multiple clocks perfectly.
7. But why did we want to synchronize clocks in the first

Then Came a Breakthrough...

« If we just want to order events happened at different
processes, we don’t need to synchronize physical
clocks.

* We just need to be able to determine the ordering.
* So the concept of logical time:

— First proposed by Leslie Lamport in the 70’s

— Based on causality of events

— Defined relative time, not absolute time
« Critical observation: time (ordering) only matters if

two or more processes interact, i.e., send/receive
messages.

place?
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Abstract View
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+ Background: we'll think of a program as a collection
of actions: instruction, send, and receive events.

» Above is what we will deal with most of the time.
— This is the execution view of a distributed system.
* Ordering question: what do we ultimately want?
— Taking two events andcggt%@ggg the ordering of the two.
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What Ordering?
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/ . What kind of orderings can we determine right away?

— Events in the same process
— Send/receive events
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Lamport Timestamps

+ Goal: take any two events, and determine the
ordering of the two.

* |t uses a single number to do so.
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» But each process nee&% 595%@9\” a time value

Logical Clocks

* (Lamport algorithm assigns logical timestamps.)

» Each process uses a counter with initial value of
zero

* A process increments its counter when a send or an
instruction happens at it. The counter is assigned to
the event as its timestamp.

* A send (message) event carries its timestamp

* For a receive (message) event the counter is
updated by max(local clock, message timestamp) +
1
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Walk-Thru
« Algorithm

All processes use a counter (clock) with initial value of zero
* Aprocess increments its counter when a send or an instruction happens
at it. The counter is assigned to the event as its timestamp.
* Asend (message) event carries its timestamp
* For a receive (message) event the counter is updated by max(local clock,
message timestamp) + 1
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Happened Before

» Define a logical relation happened-before (—)
among events:
* On the same process: a — b, if time(a) < time(b)
« If p1 sends m to p2: send(m) — receive(m)
« (Transitivity) Ifa - band b - cthen a - ¢

« Shows causality of events (a chain of events that are
causally related)
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CSE 486/586 Administrivia

« PA2Ais out.
» PA1 grading is going on. Will post grades as soon as
it's done.
» TAinfo
— Tom Sherwood: TBD
— Chang Min Park: Tuesdays 1pm - 4pm
— Sixu Piao: Wednesdays 2pm - 5pm
— Chen Yuan: Thursdays 9 am - 12 pm
— Sampreeth Boddi Reddy: Thursdays 2 pm - 4 pm
— Bekir Oguzhan Turkkan: Fridays 9am - 12pm
— Sahil Gupta: TBD
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Find the Mistake: Lamport Logical
Time

Physical Time
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Corrected Example: Lamport Logical
Time
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One Issue
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Vector Timestamps

« With Lamport clock
« e “happened-before” f = timestamp(e) < timestamp (f), but
- timestamp(e) < timestamp (f) X e “happened-before” f

* Idea?
« Each process keeps a separate clock & pass them around.
« Each process learns about what happened in all others.
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Vector Logical Clocks

» Vector Logical time addresses the issue:

* All processes use a vector of counters (logical clocks), it"
element is the clock value for process i, initially all zero.

 Each process i increments the it element of its vector upon an

instruction or send event. Vector value is timestamp of the
event.

* A send(message) event carries its vector timestamp (counter
vector)

* For a receive(message) event, Vreceiver[j] =
* Max(Vreceiver[j] , Vmessage[j]), if j is not self,
* Vreceiverj] + 1, otherwise
¢ Key point

* You update your own clock. For all other clocks, rely on what

other processes tell you and get the most up-to-date values.
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Find a Mistake: Vector Logical Time
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Comparing Vector Timestamps

s VT =VTy,

o iff VT4[i] = VT[], foralli=1, ..., n
* VT <= VT,

o iff VT4i] <= VT,[i], foralli=1, ..., n
s VT < VT,

o ff VT, <= VT, & 3j(1<=j<=n & VT[] < VT, [j])
* VT, is concurrent with VT,
« iff (not VT, <= VT, AND not VT, <= VT))
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The Use of Logical Clocks

* |Is a design decision
» NTP error bound
— Local: a few ms
— Wide-area: 10’s of ms
+ If your system doesn’t care about this inaccuracy,
then NTP should be fine.
* Logical clocks impose an arbitrary order over
concurrent events anyway
— Breaking ties: process IDs, etc.
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Summary

+ Relative order of events enough for practical
purposes

— Lamport’s logical clocks
— Vector clocks

» Next: How to take a global snapshot
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