CSE 486/586 Distributed Systems
Logical Time

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

» Clock skews do happen
« Cristian’s algorithm

— One server

— Server-side timestamp and one-way delay estimation
» NTP (Network Time Protocol)

— Hierarchy of time servers
— Estimates the actual offset between two clocks
— Designed for the Internet

CSE 486/586

Then Came a Breakthrough...

.+ We cannot sync multiple clocks perfectly.
7. But why did we want to synchronize clocks in the first

Then Came a Breakthrough...

« If we just want to order events happened at different
processes, we don’t need to synchronize physical
clocks.

* We just need to be able to determine the ordering.
* So the concept of logical time:

— First proposed by Leslie Lamport in the 70’s

— Based on causality of events

— Defined relative time, not absolute time
« Critical observation: time (ordering) only matters if

two or more processes interact, i.e., send/receive
messages.

place?
CSE 486/586 3
Abstract View
P1
a b\
P2 b Physical
i

c d mz ime

P3

e f

+ Background: we'll think of a program as a collection
of actions: instruction, send, and receive events.

» Above is what we will deal with most of the time.
— This is the execution view of a distributed system.
* Ordering question: what do we ultimately want?
— Taking two events andcggt%@ggg the ordering of the two.

CSE 486/586 4
What Ordering?
P1
a b\
P2 b Physical
I

c d mz ime

Ps

e f

/ . What kind of orderings can we determine right away?

— Events in the same process
— Send/receive events

CSE 486/586 6

Lamport Timestamps

+ Goal: take any two events, and determine the
ordering of the two.

* |t uses a single number to do so.

* Basicidea
1 2
Py a b m,
3 4
P Y Physical
d time
c m,
5
P3

f

» But each process nee&% 595%@9\” a time value

Logical Clocks

* (Lamport algorithm assigns logical timestamps.)

» Each process uses a counter with initial value of
zero

* A process increments its counter when a send or an
instruction happens at it. The counter is assigned to
the event as its timestamp.

* A send (message) event carries its timestamp

* For a receive (message) event the counter is
updated by max(local clock, message timestamp) +
1

CSE 486/586 8

Walk-Thru
« Algorithm

All processes use a counter (clock) with initial value of zero
* Aprocess increments its counter when a send or an instruction happens
at it. The counter is assigned to the event as its timestamp.
* Asend (message) event carries its timestamp
* For a receive (message) event the counter is updated by max(local clock,
message timestamp) + 1

1 2

P1 a b m,

P
c d m,

e COE 486/586 f 9

Happened Before

» Define a logical relation happened-before (—)
among events:
* On the same process: a — b, if time(a) < time(b)
« If p1 sends m to p2: send(m) — receive(m)
« (Transitivity) Ifa - band b - cthen a - ¢

« Shows causality of events (a chain of events that are
causally related)

COE 486/586 10

CSE 486/586 Administrivia

« PA2Ais out.
» PA1 grading is going on. Will post grades as soon as
it's done.
» TAinfo
— Tom Sherwood: TBD
— Chang Min Park: Tuesdays 1pm - 4pm
— Sixu Piao: Wednesdays 2pm - 5pm
— Chen Yuan: Thursdays 9 am - 12 pm
— Sampreeth Boddi Reddy: Thursdays 2 pm - 4 pm
— Bekir Oguzhan Turkkan: Fridays 9am - 12pm
— Sahil Gupta: TBD

CSE 486/586 11

Find the Mistake: Lamport Logical
Time

Physical Time

.
>

AR
1
p2 @ Q. 4
et v v
4

pd @ UG on

@ Clock Value
ﬂm%' Message

CSE 486/586 12

Corrected Example: Lamport Logical
Time

Physical Time

[€) [C)
p4d @ N ?

@ Clock Value
—tmeslamp—3p |\jessage

CSE 486/586 13

One Issue
Physical Time -~
>
p1
p2
p3
p4
-
@ Clock Value 3 and 7 are 1
—timestamp = | 1logically concurrent
essage levents — — — — _ i
CSE 486/586 14

Vector Timestamps

« With Lamport clock
« e “happened-before” f = timestamp(e) < timestamp (f), but
- timestamp(e) < timestamp (f) X e “happened-before” f

* Idea?
« Each process keeps a separate clock & pass them around.
« Each process learns about what happened in all others.

(10,0 (20,0
P1 a b m
i (21,0 (22,0 Physical
2 S p time
my
(00,1 @22
P3
A f
CSE 486/586 L

Vector Logical Clocks

» Vector Logical time addresses the issue:

* All processes use a vector of counters (logical clocks), it"
element is the clock value for process i, initially all zero.

 Each process i increments the it element of its vector upon an

instruction or send event. Vector value is timestamp of the
event.

* A send(message) event carries its vector timestamp (counter
vector)

* For a receive(message) event, Vreceiver[j] =
* Max(Vreceiver[j] , Vmessage[j]), if j is not self,
* Vreceiverj] + 1, otherwise
¢ Key point

* You update your own clock. For all other clocks, rely on what

other processes tell you and get the most up-to-date values.

COE 486/586 16

Find a Mistake: Vector Logical Time

Physical Time

Vector logical clock
(vector tlmestagl Message

CSE 486/586 17

Comparing Vector Timestamps

s VT =VTy,

o iff VT4[i] = VT[], foralli=1, ..., n
* VT <= VT,

o iff VT4i] <= VT,[i], foralli=1, ..., n
s VT < VT,

o ff VT, <= VT, & 3j(1<=j<=n & VT[] < VT, [j])
* VT, is concurrent with VT,
« iff (not VT, <= VT, AND not VT, <= VT))

CSE 486/586 18

The Use of Logical Clocks

* |Is a design decision
» NTP error bound
— Local: a few ms
— Wide-area: 10’s of ms
+ If your system doesn’t care about this inaccuracy,
then NTP should be fine.
* Logical clocks impose an arbitrary order over
concurrent events anyway
— Breaking ties: process IDs, etc.

CSE 486/586 19

Summary

+ Relative order of events enough for practical
purposes

— Lamport’s logical clocks
— Vector clocks

» Next: How to take a global snapshot

CSE 486/586

20

Acknowledgements

* These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

COE 486/586 21

