
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Logical Time

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
• Clock skews do happen
• Cristian’s algorithm

– One server
– Server-side timestamp and one-way delay estimation

• NTP (Network Time Protocol)
– Hierarchy of time servers
– Estimates the actual offset between two clocks
– Designed for the Internet

2

CSE 486/586

Then Came a Breakthrough…
• We cannot sync multiple clocks perfectly.
• But why did we want to synchronize clocks in the first

place?

3 CSE 486/586

Then Came a Breakthrough…
• If we just want to order events happened at different

processes, we don’t need to synchronize physical
clocks.

• We just need to be able to determine the ordering.
• So the concept of logical time:

– First proposed by Leslie Lamport in the 70’s
– Based on causality of events
– Defined relative time, not absolute time

• Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive
messages.

4

CSE 486/586

Abstract View

• Background: we’ll think of a program as a collection
of actions: instruction, send, and receive events.

• Above is what we will deal with most of the time.
– This is the execution view of a distributed system.

• Ordering question: what do we ultimately want?
– Taking two events and determine the ordering of the two.

5

p1

p2

p3

a b

c d

e f

m1

m2

Physi cal
time

Physical
time

CSE 486/586

What Ordering?

• What kind of orderings can we determine right away?
– Events in the same process
– Send/receive events

6

p1

p2

p3

a b

c d

e f

m1

m2

Physi cal
time

Physical
time

C 2

CSE 486/586

Lamport Timestamps
• Goal: take any two events, and determine the

ordering of the two.
• It uses a single number to do so.
• Basic idea

• But each process needs to know a time value
7

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
ti me

Physical
time

CSE 486/586

Logical Clocks
• (Lamport algorithm assigns logical timestamps.)

• Each process uses a counter with initial value of
zero

• A process increments its counter when a send or an
instruction happens at it. The counter is assigned to
the event as its timestamp.

• A send (message) event carries its timestamp

• For a receive (message) event the counter is
updated by max(local clock, message timestamp) +
1

8

CSE 486/586

Walk-Thru
• Algorithm

• All processes use a counter (clock) with initial value of zero

• A process increments its counter when a send or an instruction happens
at it. The counter is assigned to the event as its timestamp.

• A send (message) event carries its timestamp

• For a receive (message) event the counter is updated by max(local clock,
message timestamp) + 1

9

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
ti me

Physical
time

CSE 486/586

Happened Before
• Define a logical relation happened-before (®)

among events:
• On the same process: a ® b, if time(a) < time(b)

• If p1 sends m to p2: send(m) ® receive(m)

• (Transitivity) If a ® b and b ® c then a ® c

• Shows causality of events (a chain of events that are
causally related)

10

CSE 486/586

CSE 486/586 Administrivia
• PA2A is out.
• PA1 grading is going on. Will post grades as soon as

it’s done.
• TA info

– Tom Sherwood: TBD
– Chang Min Park: Tuesdays 1pm - 4pm
– Sixu Piao: Wednesdays 2pm - 5pm
– Chen Yuan: Thursdays 9 am - 12 pm
– Sampreeth Boddi Reddy: Thursdays 2 pm - 4 pm
– Bekir Oguzhan Turkkan: Fridays 9am - 12pm
– Sahil Gupta: TBD

11 CSE 486/586

Find the Mistake: Lamport Logical
Time

12

p1

p2

p3

p4

1

2

2

3

3

54

5

3

6

4

6 8

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Messagetimestamp

Physical Time

4

C 3

CSE 486/586

Corrected Example: Lamport Logical
Time

13

p1

p2

p3

p4

1

2

2

3

3

54

5

7

6

8

9 10

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Messagetimestamp

Physical Time

8

CSE 486/586

One Issue

14

p1

p2

p3

p4

1

2

2

3

3

54

5

7

6

8

9 10

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Messagetimestamp

Physical Time

8

3 and 7 are
logically concurrent
events

CSE 486/586

Vector Timestamps
• With Lamport clock

• e “happened-before” f Þ timestamp(e) < timestamp (f), but
• timestamp(e) < timestamp (f) Þ e “happened-before” f

• Idea?
• Each process keeps a separate clock & pass them around.
• Each process learns about what happened in all others.

15

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
ti me

X

Physical
time

CSE 486/586

Vector Logical Clocks
• Vector Logical time addresses the issue:

• All processes use a vector of counters (logical clocks), ith
element is the clock value for process i, initially all zero.

• Each process i increments the ith element of its vector upon an
instruction or send event. Vector value is timestamp of the
event.

• A send(message) event carries its vector timestamp (counter
vector)

• For a receive(message) event, Vreceiver[j] =

• Max(Vreceiver[j] , Vmessage[j]), if j is not self,

• Vreceiver[j] + 1, otherwise

• Key point
• You update your own clock. For all other clocks, rely on what

other processes tell you and get the most up-to-date values.

16

CSE 486/586

Find a Mistake: Vector Logical Time

17

p 1

p 2

p 3

p 4

0,0,0,0

Vector logical clock

Message(vector timestamp)

Physical Time

0,0,0,0

0,0,0,0

0,0,0,0

(1,0,0,0)

1,0,0,0

1,1,0,0

2,0,0,0

2,0,1,0

(2,0,0,0)

2,0,2,0

2,0,2,1

(2,0,2,0)

1,2,0,0

2,2,3,0

(1,2,0,0)

4,0,2,2

4,2,4,2

(4,0,2,2)

2,0,2,2

3,0,2,2

(2,0,2,2)

2,0,2,3

4,2,5,3

(2,0,2,3)

n,m,p,q

CSE 486/586

Comparing Vector Timestamps
• VT1 = VT2,

• iff VT1[i] = VT2[i], for all i = 1, … , n

• VT1 <= VT2,
• iff VT1[i] <= VT2[i], for all i = 1, … , n

• VT1 < VT2,
• iff VT1 <= VT2 & $ j (1 <= j <= n & VT1[j] < VT2 [j])

• VT1 is concurrent with VT2

• iff (not VT1 <= VT2 AND not VT2 <= VT1)

18

C 4

CSE 486/586

The Use of Logical Clocks
• Is a design decision
• NTP error bound

– Local: a few ms
– Wide-area: 10’s of ms

• If your system doesn’t care about this inaccuracy,
then NTP should be fine.

• Logical clocks impose an arbitrary order over
concurrent events anyway

– Breaking ties: process IDs, etc.

19 CSE 486/586

Summary
• Relative order of events enough for practical

purposes
– Lamport’s logical clocks
– Vector clocks

• Next: How to take a global snapshot

20

CSE 486/586 21

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

