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Last Time
• Clock skews do happen
• Cristian’s algorithm

– One server
– Server-side timestamp and one-way delay estimation

• NTP (Network Time Protocol)
– Hierarchy of time servers
– Estimates the actual offset between two clocks
– Designed for the Internet
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Then Came a Breakthrough…
• We cannot sync multiple clocks perfectly.
• But why did we want to synchronize clocks in the first 

place?

3 CSE 486/586

Then Came a Breakthrough…
• If we just want to order events happened at different 

processes, we don’t need to synchronize physical 
clocks.

• We just need to be able to determine the ordering.
• So the concept of logical time:

– First proposed by Leslie Lamport in the 70’s
– Based on causality of events
– Defined relative time, not absolute time

• Critical observation: time (ordering) only matters if 
two or more processes interact, i.e., send/receive 
messages.

4

CSE 486/586

Abstract View

• Background: we’ll think of a program as a collection 
of actions: instruction, send, and receive events.

• Above is what we will deal with most of the time.
– This is the execution view of a distributed system.

• Ordering question: what do we ultimately want?
– Taking two events and determine the ordering of the two.
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What Ordering?

• What kind of orderings can we determine right away?
– Events in the same process
– Send/receive events
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Lamport Timestamps
• Goal: take any two events, and determine the 

ordering of the two.
• It uses a single number to do so.
• Basic idea

• But each process needs to know a time value
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Logical Clocks
• (Lamport algorithm assigns logical timestamps.)

• Each process uses a counter with initial value of 
zero

• A process increments its counter when a send or an 
instruction happens at it. The counter is assigned to 
the event as its timestamp.

• A send (message) event carries its timestamp  

• For a receive (message) event the counter is 
updated by max(local clock, message timestamp) + 
1
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Walk-Thru
• Algorithm

• All processes use a counter (clock) with initial value of zero

• A process increments its counter when a send or an instruction happens 
at it. The counter is assigned to the event as its timestamp.

• A send (message) event carries its timestamp  

• For a receive (message) event the counter is updated by max(local clock, 
message timestamp) + 1
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Happened Before
• Define a logical relation happened-before (®)

among events:
• On the same process: a ® b, if time(a) < time(b)

• If p1 sends m to p2: send(m) ® receive(m)

• (Transitivity) If a ® b and  b ® c then a ® c

• Shows causality of events (a chain of events that are 
causally related)
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CSE 486/586 Administrivia
• PA2A is out.
• PA1 grading is going on. Will post grades as soon as 

it’s done.
• TA info

– Tom Sherwood: TBD
– Chang Min Park: Tuesdays 1pm - 4pm
– Sixu Piao: Wednesdays 2pm - 5pm
– Chen Yuan: Thursdays 9 am - 12 pm
– Sampreeth Boddi Reddy: Thursdays 2 pm - 4 pm
– Bekir Oguzhan Turkkan: Fridays 9am - 12pm
– Sahil Gupta: TBD
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Find the Mistake: Lamport Logical 
Time
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Corrected Example: Lamport Logical 
Time
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One Issue
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Vector Timestamps
• With Lamport clock

• e “happened-before” f Þ timestamp(e) < timestamp (f),  but
• timestamp(e) < timestamp (f)   Þ e “happened-before” f

• Idea?
• Each process keeps a separate clock & pass them around.
• Each process learns about what happened in all others.
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Vector Logical Clocks
• Vector Logical time addresses the issue:

• All processes use a vector of counters (logical clocks), ith
element is the clock value for process i, initially all zero.

• Each process i increments the ith element of its vector upon an 
instruction or send event. Vector value is timestamp of the 
event.

• A send(message) event carries its vector timestamp (counter 
vector)

• For a receive(message) event, Vreceiver[j] =

• Max(Vreceiver[j] , Vmessage[j]),   if j is not self, 

• Vreceiver[j] + 1, otherwise

• Key point
• You update your own clock. For all other clocks, rely on what 

other processes tell you and get the most up-to-date values.
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Find a Mistake: Vector Logical Time
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Comparing Vector Timestamps
• VT1 = VT2,

• iff VT1[i] = VT2[i], for all i = 1, … , n

• VT1 <= VT2,
• iff VT1[i] <= VT2[i], for all i = 1, … , n

• VT1 < VT2,
• iff VT1 <= VT2 & $ j (1 <= j <= n & VT1[j] < VT2 [j])

• VT1 is concurrent with VT2

• iff (not VT1 <= VT2 AND not  VT2 <= VT1)

18



C 4

CSE 486/586

The Use of Logical Clocks
• Is a design decision
• NTP error bound

– Local: a few ms
– Wide-area: 10’s of ms

• If your system doesn’t care about this inaccuracy, 
then NTP should be fine.

• Logical clocks impose an arbitrary order over 
concurrent events anyway

– Breaking ties: process IDs, etc.
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Summary
• Relative order of events enough for practical 

purposes
– Lamport’s logical clocks
– Vector clocks

• Next: How to take a global snapshot
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